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Abstract
Habitat fragmentation divides populations into smaller subpopulations. At the same time, the Allee effect reduces the growth
and thereby the viability of small populations. Hence, habitat fragmentation and the Allee effect can synergistically amplify
negative impacts on spatially distributed populations. To support endangered populations, management and conservation
strategies aim to improve connectivity between subpopulations by creating corridors and stepping stones, for instance. This
study investigates how enhanced connectivity (strength of connections between subpopulations in terms of dispersal rate)
influences a fragmented population subject to the Allee effect. Using a generic two-patch discrete-timemodel with a positively
density-dependent growth function, we study the impact of connectivity on the asymptotic total population size through
simulations. Due to the Allee effect, low connectivity can lead to a decline in the asymptotic total population size, which
we call the Allee pit. However, increased connectivity facilitates the rescue effect, wherein a persistent subpopulation in one
patch can save an extinction-prone subpopulation in another patch. We find that for connectivity to benefit the asymptotic total
population size, dispersal must be sufficiently large to push the smaller subpopulation above its Allee threshold. If dispersal
is below this critical dispersal rate, there remains a detrimental effect on the asymptotic total population size. Therefore, this
study implies that conservation strategies should not only aim to increase connectivity in fragmented populations subject to
Allee effects but also ensure that the critical dispersal rate is surpassed.

Keywords Spatial fragmentation · Two-patch model · Connectivity · Allee effect · Total population size · Rescue effect

Introduction

Fragmentation of land and sea due to human activities stands
as a paramount challenge in biodiversity conservation efforts,
as highlighted by the Intergovernmental Science-Policy Plat-
form on Biodiversity and Ecosystem Services (IPBES 2019).
In contrast to the negative density-dependence arising from
competition, positive density-dependence— thewell-known
Allee effect — puts small populations under pressure and
makes them more extinction prone (Courchamp et al 2008).
As habitat fragmentation splits up populations in smaller
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subpopulations, the Allee effect can reinforce the negative
consequences of fragmentation.

Mechanisms likemate-findingdifficulties or predation can
cause an Allee effect (Dennis 1989; Schreiber 2003; Gas-
coigne et al 2009; Kramer et al 2009). For instance, the
mate-finding Allee effect describes a decrease of mating
opportunities with decreasing population densities. Espe-
cially for individuals of a small population this mating
difficulty and lacking cooperation opportunities are a dis-
advantage that can make a population not viable. The
Allee effect is therefore of high relevance for extinction
research (Courchamp et al 1999). If a subpopulation with an
Allee effect is connected to other patches by dispersal, immi-
grants from another patch might support the local population
on the one hand. On the other hand, the immigrants may be
exposed to an increased risk of extinction due to the Allee
effect. This could lead to a total net loss of individuals in the
metapopulation and even increase its vulnerability. Conse-
quently, the Allee effect can make it more likely to reinforce
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the negative consequences of fragmentation. Increasing dis-
persal in such a situation can intensify this negative effect on
the total population.

This is a fundamental issue because many conservation
efforts aim at increasing connectivity to enhance reproduc-
tive success and potentially reducing the risk of extinc-
tion (Tewksbury et al 2002; Fahrig 2002), and promoting
dispersal, e.g., via corridors over highways, stepping stones,
or flowering edges of cultivated land (Turner et al 2001;
Soanes et al 2024). While such measures are often perceived
as “beneficial” it is long recognized that they can come with
disadvantages caused by several factors (Simberloff and Cox
1987; Haddad et al 2014). For example, diseases, natural
enemies, invasive species and fire can spread more easily
between patches when they are more tightly coupled. Preda-
tors can adapt behaviorally andwait around corridors for their
prey, and connectivity can synchronize population dynamics
and increase the chance of extinction (Matter 2001).

These insights naturally raise the question towhich degree
the interplay between enhanced connectivity and positive
density-dependence benefits or endangers a population in a
fragmented habitat. Here, we aim to investigate the influence
of the relationship between increased dispersal and the Allee
effect on the asymptotic total population size.

This seems to have not been done so far, which is
somewhat surprising as the Allee effect has been exten-
sively studied in patchy environments. In a discrete-time
model (Vortkamp et al 2020) analyzed the effect of increased
connectivity and a strong Allee effect on population persis-
tence and stability in a two-patch model with the Ricker
growth function, and in a continuous-time model (Gyllen-
berg et al 1999) studied the joint effect of symmetric dispersal
and the Allee effect on the heterogeneity of population densi-
ties. Amarasekare (1998) studied dispersal and a strongAllee
effect in two patches and found that if one subpopulation size
falls below the Allee threshold the patch can be rescued by
immigrants from the other patch that is above the thresh-
old (referred to as the rescue effect; also explored in, e.g.,

Brown and Kodric-Brown, 1977; Gotelli, 1991; Kang, 2013;
Van Schmidt and Beissinger, 2020). Wang (2016) investi-
gated the joint effect of dispersal and a strong Allee effect
as well and stated that there is an optimal dispersal rate
at which migration to the “better” patch is beneficial for
each individual, and above which migration is harmful to
the whole species. Moreover, the Allee effect was studied in
two-patch models with respect to stability (Pal and Samanta
2018; Saha and Samanta 2019; Chen et al 2022), invasion and
persistence (Maciel and Lutscher 2015), synchrony (Kang
and Armbruster 2011), and within more general patchy envi-
ronments (Ferdy and Molofsky 2002; Sato 2009; Sun 2016;
Cronin et al 2020), for example.

We tackle our research aim through simulations and
numerical exploration. Here, we consider a discrete-time
two-patch model that represents two subpopulations and we
assumeBeverton–Holt growthwith anAllee effect. Focusing
on spatial heterogeneity,we assumedifferent intrinsic growth
rates and carrying capacities for the two subpopulations.

Fahrig (2017) found in a literature review that frag-
mentation per se, i.e., the division of habitat into smaller
patches without reducing the total habitat amount, has been
reported to have more positive than negative effects (in the
sense of affecting population occurrence, abundance, species
richness, or other ecological response variables). This initi-
ated a debate about the ecological consequences of habitat
fragmentation (Fletcher Jr et al 2018; Fahrig et al 2019;
Miller-Rushing et al 2019). More recently, it has been shown
that spatial heterogeneity can have detrimental effects as well
when certain relationships between intrinsic growth and the
carrying capacity (i.e., r–K relationships) are fulfilled (DeAn-
gelis and Zhang 2014; Arditi et al 2015; Zhang et al 2017;
DeAngelis et al 2020; Vortkamp et al 2022; Grumbach et al
2023).

We build upon the classification of the effect of dispersal
on the asymptotic total population size into four qualita-
tively different so-called response scenarios (Grumbach et al
2023), see Fig. 1. When two connected patches achieve an

Fig. 1 The asymptotic total population size Ntot of two coupled patches
without Allee effect (θ = 0) in terms of the dispersal rate δ for
four different response scenarios. A (MB) monotonically beneficial,
B (UB) unimodally beneficial, C (BTD) beneficial turning detrimental,

andD (MD)monotonically detrimental. The dashed horizontal line cor-
responds to the sum of the two carrying capacities, K

BH

A + K
BH

B , which
is the asymptotic total population in the absence of dispersal. It serves
as the reference value
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asymptotic total population size greater (lesser) than the com-
bined carrying capacities of the individual patches for all
dispersal rate values, this outcome is termed a beneficial
(detrimental, respectively) effect of dispersal (and therefore
of connectivity). The sum of the two carrying capacities is
the asymptotic total population size in the absence of disper-
sal and therefore serves as the reference value for isolation
in comparison with connectivity.

In this paper, we will show that the inclusion of the Allee
effect can introduce a critical dispersal rate below which dis-
persal has a detrimental effect while larger dispersal rates can
have a beneficial effect on the asymptotic total population
size due to the rescue effect. The detrimental dip for small
dispersal rates is later introduced as the Allee pit. We there-
fore detect and classify so far unknown response scenarios
including the Allee pit, which we propose to call pit response
scenarios. We also provide a mechanistic explanation of the
new pit response scenarios and a biological interpretation of
the emerging rescue effect across various parameter ranges.

Setting the stage

Model description

The simplest setting for a fragmented population can bemod-
eled by a two-patch system. There are two subpopulations A
andB, and their population sizes are denoted as NA,t and NB,t

at time step t ∈ N, respectively. The asymptotic total pop-
ulation size is the sum of the two asymptotic subpopulation
sizes denoted by Ntot = N∗

A + N∗
B. The two subpopulations

are connected by dispersal with dispersal rate δ, which for
simplicity is assumed to be symmetric in both patches, i.e.,
δA = δB = δ. We assume the dispersal rate to be δ ≤ 0.5,
i.e., the largest dispersal value leads to perfect mixing of the
two subpopulations.

We consider the two-dimensional discrete-time model
where reproduction f θ

i (Ni,t ) in the individual patches i =
A,B depends on the Allee effect strength θ ∈ R

+ and is
taking place before dispersal:

NA,t+1 = (1 − δ) f θ
A(NA,t ) + δ f θ

B (NB,t ),

NB,t+1 = (1 − δ) f θ
B (NB,t ) + δ f θ

A(NA,t ).
(1)

The growth functions read

f θ
i (Ni,t ) = ri Ni,t

1 + ξi Ni,t
· Ni,t

Ni,t + θ
, i = A,B, (2)

which consists of two parts. The first factor describes
Beverton–Holt growth and the second factor describes the
mate-finding Allee effect (Courchamp et al 2008; Boukal
and Berec 2009) with Allee strength θ , which describes the

difficulty of findingmating partners. The parameters ri ∈ R
+

are the intrinsic growth rates and ξi ∈ R
+ are the intraspecific

competition strengths. From now on, when we use i in the
subscript of subpopulation sizes and parameters, we always
mean i = A,B.

In the absence of the Allee effect (θ = 0), the growth
dynamics coincide with the Beverton–Holt dynamics. In
terms of the intraspecific competition strengths, the carry-
ing capacity of the Beverton–Holt function (i.e., the positive
fixed point of f 0i ) can be expressed by K

BH

i = ri−1
ξi

. We

proceed under the assumption that K
BH

A ≤ K
BH

B , allowing
us to refer to patch A as “the smaller patch” and patch B as
“the larger patch” (K

BH

A ≥ K
BH

B would symmetrically yield
identical outcomes). If ri > 1, both patches approach their
carrying capacity when being isolated. Contrarily, if ri < 1
each of the subpopulations goes extinct in isolation. There-
fore, in the absence of the Allee effect, ri = 1 is the threshold
between long-term persistence and extinction. In the pres-
ence of the Allee effect, this threshold increases, i.e., with
increasing Allee strength the population growth rate needs
to increase such that the population persists.

The Allee strength θ is assumed to be symmetric in both
patches (suppose that both subpopulations are biologically
similar and therefore suffer the same mate-finding difficul-
ties in case of low density). It influences the Beverton–Holt
growth dynamics to have a positive density-dependence. For
θ > 0, a strong demographic Allee effect is induced, i.e.,
there is anAllee threshold belowwhich the per-capita growth
rate is smaller than one and the population goes extinct.

Isolated patches with Allee effect

For a single population (i.e., both subpopulations in isolation)
with growth dynamics (2) and an Allee effect strength θ > 0,
there are up to three equilibria. The two stable equilibria are
zero and the carrying capacity KA or KB. They are separated
by an unstable equilibrium which is the Allee threshold TA
or TB (cf. Kang (2015) for a more general model). Popula-
tion sizes below the Allee threshold decrease to extinction,
while population sizes above the Allee threshold grow to the
carrying capacity. The two nontrivial equilibria read

Ki = α + √
α2 − β

2(ri − 1)
,

Ti = α − √
α2 − β

2(ri − 1)
,

(3)

with

α = (ri − 1)(K
BH

i − θ),

β = 4K
BH

i θ(ri − 1).
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The carrying capacity and the Allee threshold exist if and
only if the radicand of the square root is non-negative and
the denominator is non-zero, i.e., if ri �= 1. The radicands of
Ki and Ti coincide and therefore vanish for the same value
of θ , which is

θc,i = K
BH

i

√
ri − 1√
ri + 1

. (4)

If θ is greater than this critical value θc,i , the radicand is
negative and therefore the nontrivial equilibria do not exist. In
this case, the population goes extinct for all initial conditions.

In the absence of the Allee effect (i.e., for θ = 0), the
equilibrium subpopulation sizes Ki coincide with the respec-
tive carrying capacity parameters K

BH

i in the Beverton–Holt
dynamics provided ri > 1. For increased Allee strength the
asymptotic subpopulation sizes Ki decrease (note that the
carrying capacity is approached only for initial conditions
within this equilibrium’s basin of attraction).

Connected patches without Allee effect

Before investigating the dynamics of the coupled model
(1)–(2), we briefly outline the impact of dispersal on the
asymptotic total population size in the case θ = 0, which has
been analyzed by Grumbach et al (2023). They give explicit
parameter conditions and a biological interpretation for four
qualitatively different response scenarios (see Fig. 1). In case
of no dispersal the total population size Ntot approaches the
sum of the two carrying capacities K

BH

A + K
BH

B , which is
shown in a dashed horizontal reference line in Fig. 1. The
sum of the two carrying capacities serves as the reference
value to designate the beneficial and detrimental effects of
increasing dispersal rates on the asymptotic total population.
The four response scenarios can be briefly characterized as
follows:

(MB) In themonotonically beneficial response scenario, the
asymptotic total population size increases monoton-
ically with increasing dispersal (see Fig. 1A).

(UB) The scenario where increasing dispersal is consis-
tently beneficial for the asymptotic total population
size, albeit with decreasing benefit for high dispersal
rates, is termed the unimodally beneficial response
scenario (see Fig. 1B).

(BTD) We speak of the beneficial turning detrimental
response scenario if increasing dispersal has a ben-
eficial effect on the asymptotic total population size
for small dispersal, but a detrimental effect for larger
dispersal (see Fig. 1C).

(MD) If the asymptotic total population size monotoni-
cally decreaseswith increasing dispersal the response

scenario is called monotonically detrimental (see
Fig. 1D).

Mechanistically the scenarios differ mainly due to the
patches’ spatial heterogeneity (depending on ri and K

BH

i ). In
case of overcrowding in one of the patches (i.e., large growth
rate and large competition) it is beneficial for the asymptotic
total population size if many individuals disperse to the other
patch in which they are subject to more relaxed conditions
with less competition. In that case, the less crowded patch
can absorb individuals like a sponge. By contrast, in case
of a net flow from relaxed conditions into a patch which is
already overcrowded, the pressure on the entire population
is even strengthened, which leads to a detrimental effect on
the asymptotic total population size. The analytic parame-
ter ranges for these four response scenarios were published
in Grumbach et al (2023). Their results build on Franco and
Ruiz-Herrera (2015); Arditi et al (2015) and Gao and Lou
(2022).

Connected patches with Allee effect

We now look at the dynamics of two connected patches with
the Allee effect (θ > 0) as introduced in Eq. 1. In the “Model
description” section, we already pointed out that in isolation
each subpopulation can have up to three equilibria, two of
which are stable: the carrying capacity and population extinc-
tion. When connecting the two subpopulations, there are up
to nine equilibria with quadristability.

Figure 2 shows the nullclines of the two subpopulations in
the phase plane (cf. Amarasekare, 1998). In Fig. 2A, we see
that for δ = 0 the coupled system has nine equilibria, which
are all combinations of {0, TA, KA} and {0, TB, KB}. The
equilibrium subpopulation sizes are independent of the other
subpopulation’s size (as they are not connected). The four sta-
ble equilibria of the coupled system are (KA, KB), (KA, 0),
(0, KB), and (0, 0). There is only one stable equilibrium of
the coupled system at which both subpopulations persist. In
the following, we will refer to the coexistence equilibrium
(KA, KB) as ECoex.

For increased δ, we see in Fig. 2B that there is still
quadristability. The increased dispersal rate induces that
there are three stable equilibria at which both subpopula-
tions survive. At the two additional coexistence equilibria
(referred to as ElowA and ElowB for N∗

A and N∗
B close to zero,

respectively), connectivity enables the larger subpopulation
to rescue the smaller subpopulation, which would go extinct
in the absence of dispersal. Even though the two additional
coexistence equilibria ElowA and ElowB are stable, they have
a high sensitivity to external variations as one of the subpop-
ulation sizes is close to zero.
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Fig. 2 The equilibria and their
stability in the phase plane. The
purple lines correspond to the
nullclines of subpopulation A
and the blue lines correspond to
the nullclines of subpopulation
B. The intersections of the two
lines are the equilibrium states
of the coupled system. The red
points mark the stable equilibria.
In A, the patches are isolated; in
B–E, the patches are connected.
Parameters: rB = 2.9,
K

BH

B = 1.9 and θ = 0.38.
Additionally, we chose in A and
D: rA = 2.9, K

BH

A = 1.9 with
δ = 0 in A and δ = 0.04 in D; B
and E: rA = 2.69, K

BH

A = 1.69
with δ = 0.04 in B and
δ = 0.052 in E; C and F:
rA = 2.49, K

BH

A = 1.49 with
δ = 0.04 in C and δ = 0.07 in F

A

C

E

B

D

F

increasing

Figure 2C and E show the nullclines for slight variations
of the parameters rA and K

BH

A . These parameter variations
change the system to have seven equilibria (three of which
are stable) in Fig. 2C and five equilibria (two of which
are stable) in Fig. 2E. We see that the coupled system (for
δ > 0) is highly sensitive to parameter changes. An increased
dispersal rate can change the system’s dynamics and sta-
ble states in different ways. In Fig. 2D and F, we see the
same parameter settings as in Fig. 2C and E, respectively,
but with an increased dispersal rate. In Fig. 2D, the total
number of equilibria differs compared to Fig. 2C while the
characteristics of the stable states are unchanged. In Fig. 2F,

the coexistence equilibrium ElowA disappears while ECoex

appears in comparison to Fig. 2E. The total number of equi-
libria is unchanged.

In our following results, we choose an initial condition
NA,0 = NB,0 = 1, that always makes the system approach
the stable equilibrium ECoex = (KA, KB) if it exists. As
Fig. 2E illustrates, there are settings in which the equilibrium
ECoex does not exist. In these situations, our chosen initial
condition approaches either one of the coexistence equilib-
ria ElowA and ElowB or (0, 0), depending on the parameter
setting.
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Results

Rescue effects and Allee pits

We now focus on the question to which degree the interplay
between enhanced connectivity and the Allee effect benefits
or diminishes the total population. Figure3 shows the asymp-
totic subpopulation sizes as functions of the Allee strength
and the asymptotic total population size as a function of the

dispersal rate. First, we consider the effect of increasingAllee
effect strength θ .

Figure 3A shows the two asymptotic subpopulation sizes
in isolation. As explained in the “Connected patches with
Allee effect” section, for the chosen initial condition (1, 1)
the system approaches the stable equilibrium ECoex =
(KA, KB) for allAllee strengths smaller than each of the criti-
cal values θc,i , depicted in Fig. 3A. The critical Allee strength
θc,i is the bifurcation point of the underlying saddle-node

Fig. 3 The rescue effect and the Allee pit with their mechanisms. A–D
The diagrams show the asymptotic subpopulation sizes N∗

A and N∗
B, in

purple and green, respectively, for the initial condition (1, 1) in terms of
theAllee effect strength θ for different degrees of connectivity. The gray
vertical lines indicate the θ–values which are chosen for the diagrams in
the E–K. The dashed red vertical lines correspond to the critical Allee
strength θc,i . E–K The asymptotic total population size is plotted in
terms of the dispersal rate δ ∈ [0, 0.5]. The dashed gray line is the ref-

erence value, i.e., the sumof the two carrying capacities.With varying θ ,
seven different (pit) response scenarios occur for this parameter setting,
namely E (MB) with θ = 0.05, F (pit–MB) with θ = 0.165 having
a rather small Allee pit which may be hard to see, G (pit–UB) with
θ = 0.33, H (pit–BTD) with θ = 0.345, I (pit–MD) with θ = 0.371, J
(MD–Extinct) with θ = 0.48, K (Extinct) with θ = 0.7. For all panels
the parameters rA = 1.5, rB = 3.5, K

BH

A = 1 and K
BH

B = 2 are fixed
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bifurcation for each subpopulation. As the Allee strength
increases, so does the Allee threshold, causing more initial
conditions to approach zero. For Allee strengths in between
both critical Allee strength, i.e., θc,A < θ < θc,B, subpopula-
tionA is extinct for all initial conditions, while subpopulation
B still approaches its carrying capacity (as the initial condi-
tion’s value for subpopulation B is sufficiently large in patch
B). Beyond the critical Allee strength θc,B, global extinction
occurs for all initial conditions.

Increased connectivity facilitates rescue mechanisms
which can enable the smaller patch to persist even for Allee
strengths beyond θc,A where it would go extinct in isolation.
Figures3B–D show the rescue effect in different intensities
depending on the degree of connectivity, i.e., the dispersal
value δ.

• In Fig. 3B, we see that already very little connectivity
(δ = 0.015) enables the larger patch B to help patch A
to persist beyond the critical Allee strengths θc,A, i.e.,
the left red vertical line. The rescue effect is not strong
enough to prevent patch A from dying out for all Allee
strengths but it delays the extinction (in terms of greater
Allee strength).

• A little increase in connectivity, as shown in Fig. 3C
(δ = 0.075), can prevent patch A from dying out before
patch B dies out. Moreover, in this setting the subpopula-
tion in patchA shrinks close to zerowith increasingAllee
strength and is therefore already at high risk of stochas-
tic extinction for intermediate Allee strengths. Here, we
remind the choice of the initial condition such that the
equilibrium ECoex is approached (explained in the “Con-
nected patches with Allee effect” section). Even for this
choice, the Allee effect can put the subpopulations and
therefore the total population under increased risk of
extinction.

• For further increased connectivity, as shown in Fig. 3D
(δ = 0.17), the rescue effect prevents patch A from going
extinct before patch B without high risk of stochastic
extinction. The subpopulation sizes N∗

A and N∗
B come

closer to each other while the Allee strength beyond
which both subpopulations go extinct declines.

For Allee strengths just above θc,A the total population
takes big benefit from increasing connectivity and the result-
ing rescue effect. But the rescue effect also has its drawbacks.
The larger the impact of the rescue effect on the smaller
subpopulation, the lower the Allee strengths above which
complete extinction of the total population occurs.

The rescue effect induces new qualitative behaviors in the
response scenarios. We found six so far unknown response
scenarios. The major novelty is what we call an Allee pit.
For small dispersal rates, the asymptotic total population
size falls below the sum of the two carrying capacities (our

reference value) while for dispersal rates greater than a crit-
ical threshold (δcrit) the asymptotic total population size can
increase again beyond KA+KB.We refer to the new response
scenarioswhich include anAllee pit as pit response scenarios
(pit–MB, pit–UB, pit–BTD, and pit–MD) (shown in Fig. 3F–
I). They closely correspond to the four response scenarios
MB, UB, BTD, and MD for θ = 0, shown in Fig. 1. More-
over, a fifth and sixth new response scenario without an Allee
pit were detected. One is closely related to the response sce-
narioMD.Here the novelty is that for large dispersal rates, the
population goes extinct. In order to have a clear distinction,
we call this new response scenario MD–Extinct (shown in
Fig. 3J). Lastly, Extinct is the response scenario in which the
population is extinct for all dispersal rates (shown in Fig. 3K).
Generally, in Fig. 3E–K, we see how the response scenarios
change with increasing Allee effect strength from the MB
response scenario over pit response scenarios to the Extinct
response scenario.

The Allee pit induces that the connectivity of the two
patches needs to be above a critical value before the rescue
effect can develop its beneficial impact on the asymptotic
total population size. In the pit response scenarios (see
Fig. 3F–I and the referring vertical lines in Fig. 3A–D), for
very small dispersal rates the larger patch only loses individu-
als as the number of dispersing individuals is not high enough
to push subpopulation A above its Allee threshold (vertical
lines F, G, H, and I in Fig. 3B). If subpopulation size A is
below its Allee threshold, subpopulation A goes extinct and
consequently, there is no dispersal from patch A to patch
B. Therefore, subpopulation B has only emigrants and no
immigrants, and a net loss results for the total population
size. This is the reason for the Allee pit. Enhanced connec-
tivity increases the number of dispersing individuals from B
toA such that patch A can be rescued from extinction (follow
the vertical lines F, G, H, and I to Fig. 3C and D). As soon
as the rescue takes place, the total population size increases
and can even increase beyond the reference value KA + KB

(in Fig. 3F, G, and H). The Allee pit is surpassed, and the
total population benefits from the rescue effect. Larger dis-
persal rates can reduce the degree of benefit again or even
cause drastic loss in population size and extinction. There-
fore, it highly depends on the Allee strength θ whether it is
beneficial or detrimental to increase the dispersal rate δ.

Impact of the Allee effect on the response scenarios

We now want to investigate how an increased Allee strength
influences the resulting (pit) response scenarios. In particu-
lar, we aim to understand for which Allee strengths the Allee
pit occurs, depending on habitat heterogeneity. Habitat het-
erogeneity can be represented by different values of the two
carrying capacities KA and KB, and the two intrinsic growth
rates rA and rB. Here, we fix KA, KB and rA while varying
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rB to obtain different degrees of heterogeneity. We, there-
fore, specifically investigate which parameter combinations
of the Allee strength θ and habitat heterogeneity represented
by rB result in pit response scenarios. To explore this, we run
numerical simulations for a large range of θ and rB values.
The parameter regions for pit response scenarios lie in the so-
called “rescue regions” as the rescue effect is the underlying
mechanism of the pit response scenarios.We obtain two such
rescue regions R1 and R2, in which one of the subpopula-
tions rescues the other.Moreover, there is one region inwhich
rescue is not necessary as both subpopulations survive inde-
pendently (P); and one region where both subpopulations
face total extinction (E). The results of our simulations are
shown in Fig. 4. The four regions are indicated in the inset in
Fig. 4. Each color indicates a distinct (pit) response scenario
as indicated in the color bar. In order to illustrate how to
understand this figure, we can look at Fig. 3E–K which cor-
responds to a horizontal cut through Fig. 4 for a fixed habitat
heterogeneity, i.e., at rB = 3.5, along all the occurring (pit)
response scenarios when the Allee strength is increased.

First, we are interested in the parameter regions for which
the rescue effect occurs. For parameter combinations of θ and
rB for which only one of the two subpopulations persists in
isolation, the rescue effect occurs as soon as the two patches
are connected. Then, the rescue effect induces in many, but
not all, cases an Allee pit. The rescue regions encompass
all parameter combinations where either patch A is extinct
in isolation and rescued by B, or vice versa. Therefore, the
boundaries of the rescue regions are givenby the criticalAllee

Fig. 4 The response scenarios for parameter combinations of the Allee
strength θ and the growth rate rB. Each color refers to one of the
scenarios as indicated in the colorbar on the right side. The dashed
and dash-dotted lines coincide with the bifurcation points for the iso-
lated subpopulations, i.e., θc,A and θc,B, respectively, as given in Eq. 4.
Schematically, the bifurcation curves are boundaries between the four
regions P , R1, R2, and E as shown in the inset. The parameters
rA = 1.5, K

BH

A = 1 and K
BH

B = 2 are fixed. The method utilized
to generate this figure is outlined in Appendix A.1. A zoom into the
lower left corner, i.e., region R2, can be found in Fig. 8 in Appendix A

strengths θc,i . The rescue effect occurs if and only if theAllee
strength lies in between the two critical Allee strengths, i.e.,
for

θ ∈
{

(θc,A, θc,B), if θc,A < θc,B,

(θc,B, θc,A), if θc,B < θc,A,

where one subpopulation is extinct in isolation and the other
subpopulation is viable.

In Fig. 4, the boundaries are plotted based on Eq. 4, refor-
mulated in terms of rB. The dashed line indicates the critical
Allee strength of patch A, which is independent of rB (and
therefore a vertical line). The dash-dotted line indicates the
critical Allee strength of patch B, which is dependent on rB
(and therefore a curve). As indicated in the inset in Fig. 4,
these boundaries divide the diagram into four regions:

• P – persistence of both patches,
• R1 – rescue region,
• R2 – inverse rescue region,
• E – extinction of both patches.

In addition to the two regions P and E, in this section, we
focus on the upper right rescue region R1 in which the larger
patch B rescues the smaller patch A. The rescue region R2

in which the parameter values result in an inverse rescue
effect, i.e., the smaller patch A rescues the larger patch B, is
explained in Appendix B.

RegionP encompasses parameter combinations for which
patches A and B both persist in isolation and therefore
the total population asymptotically persists. For θ = 0,
the parameter ranges for the four different response scenar-
ios can be found analytically (Grumbach et al 2023). For
enhanced Allee strength (θ > 0) the parameter region of
the response scenario UB widens. The threshold value of
rB to the response scenario MB increases and the threshold
value to the response scenarios BTD decreases. The param-
eter region of the response scenario MD shrinks. For Allee
strengths very close to θc,A, also the parameter region of the
response scenario BTD drastically shrinks, which may be
hard to see in Fig. 4. Parameter combinations for which both
subpopulations go extinct in isolation and therefore the entire
population dies out, i.e., the response scenario Extinct, are
part of the region E.

The rescue region R1 encompasses the parameter region
for which subpopulation A would be extinct in isolation.
Connectivity can facilitate subpopulationB to rescue subpop-
ulation A from extinction. The mechanism was explained in
the “Rescue effects and Allee pits” section. The left bound-
ary of R1 is the critical Allee strength of patch A. This is
the threshold at which the response scenarios without an
Allee pit change to pit response scenarios. At this thresh-
old MB switches to pit–MB, UB switches to pit–UB, and
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BTD switches to pit–BTD. The system changes from hav-
ing five equilibria with three stable states to having three
equilibria with only two stable states. The stable state which
may disappear for increased θ is the coexistence equilib-
rium ECoex = (KA, KB). Therefore, for small dispersal rates
individuals from patch B move into patch A, where the sub-
population lies below its Allee threshold, which causes the
Allee pit. Increased connectivity enables sufficiently many
individuals to disperse into patch A such that the subpopula-
tion size grows beyond the Allee threshold, the stable state
ECoex appears, and therefore both subpopulations coexist at
a larger population size. This mechanism can be seen in the
change of the existence of equilibria from Fig. 2E to F. For
values of θ very close to the left boundary of R1 the Allee
pit is extremely narrow and shallow (cf. Fig. 5), i.e., connec-
tivity “immediately” (for an extremely small dispersal rate)
rescues the extinct subpopulation.

At the right boundary of R1 for Allee strengths below the
critical value θc,B the response scenario does not include an
Allee pit. The conditions in both patches are highly vulnera-
ble. The larger patch can avoid immediate extinction for small
dispersal rates but cannot avoid extinction for greater dis-
persal rates. Therefore, we obtain the MD–Extinct response
scenario.

In the transition from P to R1 and then to E, we discover
that an increasingAllee strength increases the pressure on the
total population. This pressure results in a change of response

scenarios from beneficial ones to highly detrimental ones and
even to extinction. A closer look at the width and depth of the
Allee pit helps us to understand how the qualitatively similar
response scenarios in one color segment of Fig. 4 differ in
their potential consequences.

The width and depth of Allee pits

We already highlighted that the asymptotic total population
size in isolation, i.e., KA + KB, decreases with increasing
Allee strength θ . This pressure on the populationmight make
a metapopulation even more prone to extinction. Especially
the Allee pit can potentially further decrease a population
size drastically close to zero or the Allee threshold such that
small perturbations in external factors could drive a popula-
tion to extinction. This risk of extinction can be diminished
by increasing the dispersal rate beyond the critical dispersal
rate δcrit above which connectivity is beneficial. Therefore,
wewant to have a closer look at thewidth ofAllee pits (which
we define as the distance between zero and the critical dis-
persal rate) and the depth of Allee pits (which we define as
the absolute difference between the sum of the two carry-
ing capacities and the local minimum of the asymptotic total
population size). We understand the depth of the Allee pit as
a measure of the stochastic extinction probability.

The shapes ofAllee pits vary a lot depending on the param-
eter values. They mainly differ in their width and depth as

Fig. 5 Different shapes of Allee
pits. They differ in width and
depth and therefore in their
critical dispersal rates δcrit and
risks of extinction (the distance
from zero to the local minimum
indicated by a red circle). The
depth of the Allee pit varies in
the four panels from shallow
(left panels, indicated by thin
and short red arrows) to deep
(right panels, indicated by thick
and long red arrows). The width
of the Allee pit varies in the four
panels from narrow (upper
panels, indicated by thin and
short purple arrows) to wide
(lower panels, indicated by thick
and long purple arrows)
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illustrated in Fig. 5. In Fig. 5A, the pit is narrow and shallow
which means the critical dispersal rate is very small and little
risk comes along with the Allee pit. In contrast, in Fig. 5B,
the Allee pit is also very narrow but deep, and therefore the
population declines locally close to zero (or potentially to the
Allee threshold). In Fig. 5C, the Allee pit is very shallow but
wide. The induced risk of stochastic extinction is rather low
but the total population is less likely to benefit from increased
connectivity. Figure5D shows an Allee pit which is deep and
wide. It induces a high risk of stochastic extinctionwhich can
only be diminished by drastically increasing connectivity.

Figure 6 shows the critical dispersal rate and theminimum
asymptotic total population size of the Allee pits occurring in
the pit response scenarios across a large range of parameter
combinations of θ and rB. The method utilized to generate
this figure is outlined in Appendix A.2. Figure6A focuses on
the width of the Allee pit. The greater the Allee strength θ the
larger the critical dispersal rate and therefore the wider the
Allee pit. Within both rescue regions R1 and R2 (cf. Fig. 4),
larger rB values have a larger maximal width (indicated by a
darker coloring) with increasing Allee strength.

In Fig. 6B, we see that for increased Allee strength θ

the minimum population size decreases and therefore the
Allee pit gets deeper. For parameter combinations close to
the intersection of the region boundaries θc,A and θc,B the
minimum takes lower values. Approaching the intersection,
both patches get closer to their bifurcation points, i.e., close to
extinction. This explainswhy the depth andwidth of theAllee
pit increase (a lot) in a small neighborhoodof the intersection.
Especially for parameter combinations in R2 the minimum is
very close to zero, which induces an increased risk of extinc-
tion for the total population. We can infer that situations in
which the smaller patch rescues the larger patch potentially
generate a severe risk of extinction.

Discussion and conclusions

We found that the mate-finding Allee effect in two connected
patches can induce an Allee pit. The existence of the Allee
pit signifies that mild or moderate increases in connectiv-
ity are detrimental, i.e. the asymptotic total population size
decreases with increasing dispersal rate when the latter is
low. This means that the Allee effect is another (and novel)
mechanism where a stronger coupling between patches can
be disadvantageous. The Allee pit can be “dangerous” for a
population as it may decrease the total population size dras-
tically for certain degrees of connectivity. This is especially
the casewhen the larger patch gets vulnerable and extinction-
prone (evident for parameter combinations in the region R2

in Fig. 6).
The difference between the pit response scenarios and

other response scenarios is the Allee pit. It emerges from
the “attempt” of the larger patch to rescue the smaller one
which results, for too little connectivity, in a loss of individu-
als for the total population. Individuals die after dispersing as
the subpopulation size is still below the Allee threshold. That
causes the Allee pit for small dispersal. Enhanced connectiv-
ity facilitates the occurrence of the rescue effect which can
reestablish an extinct subpopulation, resulting in overcoming
the Allee pit when a critical threshold of connectivity is sur-
passed. For dispersal rates beyond that critical dispersal rate,
the subpopulations grow above their Allee thresholds and the
total population then benefits from connectivity. The asymp-
totic total population size can increase beyond the sum of the
two carrying capacities and can thus turn from detrimental
to beneficial. This could be an important point of orientation
for conservation management, as the latter should increase
connectivity to dispersal rates beyond those critical values.
This would make sure that the connectivity is large enough
to enable the population to gain from the rescue effect rather

Fig. 6 Width and depth of Allee
pits. A The critical dispersal rate
which corresponds to the width
of the Allee pit. B The minimum
asymptotic total population size
which corresponds to the depth
of the Allee pit. The plots are
generated only in parameter
regions in which pit response
scenarios occur; other parameter
regions are shown in white. In
both panels, the dashed and
dash-dotted lines coincide with
the boundaries θc,A and θc,B in
Fig. 4. We fixed rA = 1.5,
K

BH

A = 1 and K
BH

B = 2
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than suffering under the Allee pit risks. Apart from the Allee
pit, the biological mechanisms behind the four pit response
scenarios are qualitatively similar to the ones of the response
scenarios MB, UB, BTD, and MD, respectively described
in Grumbach et al (2023).

Two further response scenarios have been identified in
this study: MD–Extinct and Extinct. In MD–Extinct, the
asymptotic total population size decreases with increased
connectivity, akin toMD, and goes extinct for large dispersal
rates. This is because for some dispersal rates, one or both
asymptotic subpopulation sizes fall below their Allee thresh-
olds and therefore (sub-)population extinction occurs. If both
subpopulation sizes remain above their Allee thresholds, the
response scenario reverts to MD instead of MD–Extinct.
This emphasizes once again that the Allee effect is par-
ticularly dangerous for small and declining populations.
The Extinct response scenario only occurs when the Allee
strength exceeds the critical Allee strengths of both subpop-
ulations, resulting in extinction for both subpopulations in
isolation as well as for all levels of connectivity.

Throughout this paper, we looked at the rescue of one
patch in which the subpopulation is extinct in isolation by
another viable patch. Our framework can be biologically
interpreted and applied in other contexts as well. The viable
subpopulation can, for example, be understood as an invasive
species which attempts to invade a new patch. In this setting,
the other subpopulation is zero, as the invasive species does
not yet inhabit this patch. TheAllee pit signifies a loss of indi-
viduals attempting to invade while for dispersal rates beyond
the critical dispersal rate the invasive species can establish in
the new patch.

It is interesting to look at the circumstances under which
Allee pits and the rescue effect occur. Figure4 suggests that
the range of Allee strengths θ inducing an Allee pit in region
R1 expands with rB . Biological explanations for this might
be that a larger growth rate in subpopulation B enables the
subpopulation to reproduce faster. Therefore, it can rescue
the other subpopulation A even for stronger Allee effects
before the pressure of the Allee effect induces extinction.
For other parameter settings, we obtained a similar result.

Within the rescue region, the thresholds between the pit
response scenarios were not described analytically here but
obtained by numerical simulations. The explicit determina-
tion of these thresholds remains an open problem for future
research. The analytical description of the critical dispersal
rate remains an open question as well.

The coupled system which was investigated in this study
can have up to nine equilibria, of which up to four are stable.
For our numerical simulations, we chose an initial condition
from the basin of attraction of the coexistence equilibrium
ECoex = (KA, KB). In conservation ecology, we are mostly
interested in the highest chance of persistence for all sub-
populations. As we saw in our results even the coexistence

equilibrium ECoex may be exposed to a high risk of extinction
due to the Allee effect. With a different choice of initial con-
ditions than the chosen one throughout this paper, different
stable equilibria would be approached. Given that the other
equilibria are characterized by smaller (sub)population sizes,
populations are at risk of extinction at lower Allee strength
levels compared to the equilibrium ECoex. While the results
are expected to be comparable, other initial conditions could
lead to narrower rescue regions and pits, potentially increas-
ing the risk of stochastic extinction across a wider parameter
range.

In this study, the mate-finding Allee effect was consid-
ered. Among various forms of Allee effects, including those
driven by predation or phenomenological factors, the mate-
finding Allee effect stands out as one of the most frequently
observed phenomena in empirical studies (Courchamp et al
2008; Kramer et al 2009). Results may be expected to hold
qualitatively also for other forms of Allee effects, such as
the predation-driven Allee effect. We assumed that the mate-
finding Allee effect occurs symmetrically and independently
within each patch. Nevertheless, it is an interesting question
for future work to assume the Allee effect to occur in only
one of the patches and how fragmentation complicates mate
finding across (and not only within) different patches.

The term “critical dispersal rate” has been used in various
contexts in the literature and can refer to different phenom-
ena. For instance, Vortkamp et al (2022) consider the BTD
response scenario and define the critical dispersal rate as the
smallest dispersal rate at which the asymptotic total popula-
tion size falls below the reference value. Thus, their critical
dispersal rate delineates a transition from a beneficial to a
detrimental effect. Critical dispersal rates that mark a simi-
lar transition from positive to negative outcomes, e.g., from
survival to extinction, have been found when dispersal is
costly (Kirkland et al 2006) or from suitable habitats to
hostile environments as in the KiSS model (Kierstead and
Slobodkin 1953; Skellam 1951), see (Ryabov and Blasius
(2008)) for a review. By contrast, our critical dispersal rate
describes a transition from negative to positive effects of
increasing dispersal, as it identifies the dispersal rate at which
the detrimental Allee pit switches to a beneficial effect. Simi-
lar positive effects of increased dispersal have been observed
in patch occupancy models when a metapopulation is to bal-
ance local extinction by recolonization (Levins 1969) or in
spatially explicit models when a single population is to track
shifting climatic conditions (Potapov and Lewis 2004; Ler-
oux et al 2013; Kerr 2020), prevent being washed out in
advective environments such as streams and rivers (Speirs
and Gurney 2001; Lutscher et al 2005; Hilker and Lewis
2010), or avoid sinking in the vertical water column (Shige-
sada and Okubo 1981; Huisman et al 2002). Vortkamp et al
(2020) found that dispersal can prevent essential extinction
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in coupled patches with Allee thresholds and overcompen-
sation.

In the context of conservation and landscape planning,
the question of which management strategies are the most
effective often centers on identifying and promoting opti-
mal network structures (e.g., Watts et al, 2009; DeAngelis
et al, 2021).However, “optimal” can be understood in various
ways: in terms of maximizing biomass (e.g., Gadgil, 1971;
Freedman and Waltman, 1977; DeAngelis et al, 1979;
Vance, 1980; Holt, 1985; Arditi et al, 2015; Franco and Ruiz-
Herrera, 2015; Zhang et al, 2017; Grumbach et al, 2023),
enhancing growth rates (e.g., Nguyen et al, 2023), ensuring
evolutionary stability (e.g., Kirkland et al, 2006), or deter-
mining the ideal spacing between habitat patches in presence
of disturbances (e.g., White et al, 2021; Crespo-Miguel
et al, 2022). The work of White et al (2021) emphasizes the
trade-off between disturbance impacts and successful dis-
persal for recolonization, concluding that intermediate patch
spacing (translating into intermediate dispersal) is optimal.
Also in our results there are scenarios in which intermedi-
ate dispersal rates maximize the asymptotic total population
size, namely BTD and pit–BTD. But the crucial point in
our findings is the existence of a critical dispersal rate;
if not exceeded, small increases in dispersal can lead to
worse outcomes rather than improvements, suggesting that
no management is better than poor management. The critical
dispersal rate emerges solely through spatial heterogeneity
and the Allee effect, even in the absence of disturbances
and distance-dependent dispersal success. This underlines
the importance of considering life-history trade-offs in the
context of Allee effects, which can play a crucial role in
determining the best management strategies, where avoiding
worsening the situation could be more critical than finding
the optimal solution.

In summary, our study underlines the pivotal role of con-
nectivity and theAllee effect in shaping population dynamics
in fragmented habitats. We found that low connectivity can
lead to population declines in the form of Allee pits, while
enhanced connectivity facilitates the rescue effect, mitigat-
ing extinction risks. Our results emphasize the importance of
achieving dispersal rates above a critical threshold to maxi-
mize the benefits of connectivity for population persistence.
Overall, these findings offer fundamental and potentially
valuable insights for the development of effective conser-
vation strategies in fragmented landscapes.

Appendix A: Numerical methods

A.1 Methods for Fig. 4

In the following, we explain the numerical method which we
utilized to generate Fig. 4. We solved Eq. 1 with the initial

condition (1, 1), which lies in the basin of attraction of the
equilibrium (KA, KB) if it exists, for 500 time steps. We
repeated this for 300 equidistant dispersal rates δ ∈ [0, 0.5].
We also did this for a large range of Allee strengths and
growth rates in patch B, each with 180 equidistant values in
the ranges shown in Fig. 4. All other parameter values were
fixed.

For each parameter combination of θ and rB, and for each
dispersal rate value, we saved the total population size, i.e.,
the sum of N∗

A and N∗
B in Eq. 1, after 500 time steps. We

interpreted the total population size at the 500th time step as
the asymptotic total population size Ntot, to which we refer
as the ATPS. We did not find any evidence for sustained
oscillations.

As the respective reference value Re f for theATPS,mark-
ing the transition between beneficial and detrimental effects,
we used the ATPS at δ = 0, i.e., KA + KB. For each com-
bination of θ and rB, let ATPS(δ) denote the ATPS for one
of the discretized dispersal rate values. ATPS(δmax) is the
ATPS at the largest dispersal rate value. Then ATPS(�δ) is
theATPS at the smallest positive dispersal rate value, as�δ is
the step size of the dispersal rate discretization. The response
scenarios for each parameter combination of θ and rB were
detected and classified by four different criteria as visualized
in Fig. 7.

The first step of the classification is based on the slope
of the ATPS at zero dispersal (cf. Fig. 7(I)). To this end, we
compared the ATPS at the smallest positive dispersal rate to
Ref. TheATPS(�δ) lies above Re f for the response scenarios
MB, UB, and BTD. The ATPS(�δ) is equal to Ref in the
response scenario Extinct; in this case, the ATPS is zero for
all dispersal rates. The ATPS(�δ) lies below Ref for all pit
response scenarios and the detrimental response scenarios
(MD, MD–Extinct).

Second, we distinguished the two resulting groups of
response scenarios by comparing the ATPS at the largest
dispersal rate value, i.e., ATPS(δmax), to Ref (cf. Fig. 7(II)).
The response scenarios which have a beneficial effect for
large dispersal rates are MB and UB with a positive slope in
(I), and pit–MB and pit–UB with a negative slope in (I). The
response scenarios which have a detrimental effect or lead to
extinction for large dispersal rates are BTD with a positive
slope in (I), and pit–BTD, pit–MD, MD, and MD–Extinct
with a negative slope in (I).

Third, we further distinguished the response scenarios
based on the number of local extrema of ATPS(δ). There-
fore, we counted the number of changes in the slope of the
ATPS, which we calculated by comparing the signs of the
differences between ATPSs at consecutive dispersal rate val-
ues δi and δi+1, where i ∈ [0, 299] (cf. Fig. 7(III)). This
served to clearly distinguish between the response scenarios
MB (zero extrema), UB (one maximum), pit–MB (one min-
imum), and pit–UB (two extrema). This leaves pit–BTD and
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Fig. 7 The decision tree for the classification of the response scenarios.
ATPS(�δ) is the asymptotic total population size at the smallest posi-
tive dispersal rate. ATPS(δmax) is the asymptotic total population size at
the largest dispersal rate value. #SC is the count of the sign changes of

the differences between the ATPS at consecutive dispersal rate values.
The red symbols indicate the criteria (I)–(IV) in the small graphs, which
sketch the ATPS as a function of the dispersal rate

pit–MD (each of which has two local extrema), and MD–
Extinct and MD (each of which has no local extrema), for
which we used a further criterion.

Finally, by checking whether the ATPS at the largest dis-
persal rate value, i.e., ATPS(δmax), is positive or zero, we
distinguished between pit–BTD (positive at largest dispersal
rate), pit–MD (zero at largest dispersal rate), MD (positive
at largest dispersal rate), and MD–Extinct (zero at largest
dispersal rate) (cf. Fig. 7(IV)).

A.2 Methods for Fig. 6

In the following, we explain the numerical method which we
utilized to generate Fig. 6. To calculate the critical dispersal

rate and the minimumATPS for the four pit response scenar-
ios, we used the response scenario classification outlined in
Appendix A.1.

As the critical dispersal rate, we saved the dispersal rate
value for which the difference between the ATPS and Ref
(which is negative for small dispersal rates due to the Allee
pit) is either zero or positive for the first timewhen increasing
the discretized dispersal rate.

In order to determine the Allee pit minimum, we looked
for the first change from a negative to a positive slope of
the ATPS when increasing the discretized dispersal rate. We
started from a dispersal rate of zero. As the minimum, we
saved the ATPS for the dispersal rate value for which the
difference between two consecutive ATPSs is either zero or
positive for the first time.
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Fig. 8 The response scenarios
in rescue region R2, i.e., the
inverse rescue effect, for
parameter combinations of the
Allee strength θ and the growth
rate rB. This is a zoom into the
lower left corner of Fig. 4. Each
color refers to one of the
response scenarios as indicated
in the colorbar. The dashed and
dash-dotted lines coincide with
the boundaries in the inset of
Fig. 4. The parameters rA = 1.5,
K

BH

A = 1 and K
BH

B = 2 are fixed

Appendix B: The inverse rescue effect

In the “Impact of the Allee effect on the response scenar-
ios” section, we closely looked at the change of the response
scenarios for increasing Allee strength. We focused on the
rescue region R1 in Fig. 4, in which the larger subpopulation
B persists in isolation, while the smaller subpopulation A
would die out in isolation. Therefore, in R1 patch B rescues
patch A. Here, we briefly look at region R2 in which the
inverse rescue effect occurs, i.e., “the smaller” (in terms of
K

BH

i ) subpopulation A survives in isolation and can rescue
“the larger” subpopulation B by increased connectivity.

Figure 8 shows the results of our numerical simulations
zoomed in the parameter values of the region R2. In the
absence of the Allee effect, only the four response scenarios
MB, UB, BTD, and MD occur. As soon as the Allee strength
is greater than zero, we obtain the pit response scenarios due
to the rescue effect in the rescue region R2. For smaller r2–
values, we still obtain the MD response scenario for small
Allee strengths. For increased Allee strength the parameter
combinations in rescue region R2 result in the MD–Extinct
response scenario. Patch A can prevent patch B from imme-
diate extinction for small dispersal but for larger dispersal,
the total population dies out.

Acknowledgements The authors gratefully acknowledge discussions
with Irina Vortkamp, Femke Reurik, Daniel Franco, and Juan Segura.
CG expresses her gratitude to Atsushi Yamauchi, Hiromi Seno, Jia–
Yuan Dai, Sze–Bi Hsu, and Shih–Bin Wang for insightful discussions
duringCG’s research stay in Japan andTaiwan, to themembers ofMeike
Wittmann’s lab meeting and the members of the Institute of Marine
Affairs and Resource Management at the National Taiwan Ocean Uni-
versity for valuable input, and to Christian Guill and Bernd Blasius for
fruitful exchanges.

Author contribution Formal analysis and investigation of the results:
CG; methodology: all authors; conceptualization and supervision:
FMH; writing — original draft preparation: CG; writing — review and
editing: all authors.

Funding Open Access funding enabled and organized by Projekt
DEAL. This research was partially supported by the German Academic
Exchange Service (DAAD) with funds from the Federal Foreign Office,
and by the Universitätsgesellschaft Osnabrück.

Data availability No datasets were generated or analyzed during the
current study.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Amarasekare P (1998) Interactions between local dynamics and dis-
persal: insights from single species models. Theor Popul Biol
53(1):44–59. https://doi.org/10.1006/tpbi.1997.1340

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1006/tpbi.1997.1340


Theoretical Ecology             (2025) 18:5 Page 15 of 16     5 

Arditi R, Lobry C, Sari T (2015) Is dispersal always beneficial to carry-
ing capacity? New insights from the multi-patch logistic equation.
Theor Popul Biol 106:45–59. https://doi.org/10.1016/j.tpb.2015.
10.001

Boukal DS, Berec L (2009) Modelling mate-finding Allee effects and
populations dynamics, with applications in pest control. Popul
Ecol 51:445–458. https://doi.org/10.1007/s10144-009-0154-4

Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeog-
raphy: effect of immigration on extinction. Ecol 58(2):445–449.
https://doi.org/10.2307/1935620

Chen L, Liu T, Chen F (2022) Stability and bifurcation in a two-
patch model with additive Allee effect. AIMSMath 7(1):536–551.
https://doi.org/10.3934/math.2022034

Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density
dependence and the Allee effect. Trends in Ecol Evol 14(10):405–
410. https://doi.org/10.1016/S0169-5347(99)01683-3

Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and
conservation. Oxford University Press, Oxford. https://doi.org/10.
1093/acprof:oso/9780198570301.001.0001

Crespo-Miguel R, Jarillo J, Cao-García FJ (2022) Scaling of pop-
ulation resilience with dispersal length and habitat size. J
Statis Mech Theor Exper 2022(2):023501. https://doi.org/10.
1088/1742-5468/ac4982

Cronin JT, Fonseka N, Goddard J et al (2020) Modeling the effects
of density dependent emigration, weak Allee effects, and matrix
hostility on patch-level population persistence. Math Biosci Eng
17(2):1718. https://doi.org/10.3934/mbe.2020090

DeAngelis D, Travis C, Post W (1979) Persistence and stability of
seed-dispersed species in a patchy environment. Theor Popul Biol
16(2):107–125. https://doi.org/10.1016/0040-5809(79)90008-X

DeAngelis D, Zhang B, NiWM et al (2020) Carrying capacity of a pop-
ulation diffusing in a heterogeneous environment. Math 8(1):49.
https://doi.org/10.3390/math8010049

DeAngelis DL, Zhang B (2014) Effects of dispersal in a non-
uniform environment on population dynamics and competition:
a patch model approach. Discrete Continuous Dyn Syst Ser B
19(10):3087–3104. https://doi.org/10.3934/dcdsb.2014.19.3087

DeAngelis DL, Franco D, Hastings A et al (2021) Towards building a
sustainable future: positioning ecological modelling for impact in
ecosystemsmanagement. Bull Math Biol 83:1–28. https://doi.org/
10.1007/s11538-021-00927-y

Dennis B (1989) Allee effects: population growth, critical density, and
the chance of extinction. Nat Resour Model 3(4):481–538. https://
doi.org/10.1111/j.1939-7445.1989.tb00119.x

Fahrig L (2002) Effect of habitat fragmentation on the extinction thresh-
old: a synthesis. Ecol Appl 12(2):346–353. https://doi.org/10.
1890/1051-0761(2002)012[0346:EOHFOT]2.0.CO;2

Fahrig L (2017) Ecological responses to habitat fragmentation per
se. Ann Rev Ecol Evol Syst 48:1–23. https://doi.org/10.1146/
annurev-ecolsys-110316-022612

Fahrig L, Arroyo-Rodríguez V, Bennett JR et al (2019) Is habitat
fragmentation bad for biodiversity? Biol Conserv 230:179–186.
https://doi.org/10.1016/j.biocon.2018.12.026

Ferdy JB, Molofsky J (2002) Allee effect, spatial structure and species
coexistence. J Theor Biol 217(4):413–424. https://doi.org/10.
1006/jtbi.2002.3051

Fletcher RJ Jr, Didham RK, Banks-Leite C et al (2018) Is habitat frag-
mentation good for biodiversity? Biol Conserv 226:9–15. https://
doi.org/10.1016/j.biocon.2018.07.022

Franco D, Ruiz-Herrera A (2015) To connect or not to connect iso-
lated patches. J Theor Biol 370:72–80. https://doi.org/10.1016/j.
jtbi.2015.01.029

Freedman H, Waltman P (1977) Mathematical models of population
interactions with dispersal. I: stability of two habitats with and
without a predator. SIAM J Appl Math 32(3):631–648. https://
doi.org/10.1137/0132052

Gadgil M (1971) Dispersal: population consequences and evolution.
Ecol 52(2):253–261. https://doi.org/10.2307/1934583

Gao D, Lou Y (2022) Total biomass of a single population in two-
patch environments. Theor Popul Biol 146:1–14. https://doi.org/
10.1016/j.tpb.2022.05.003

Gascoigne J, Berec L, Gregory S et al (2009) Dangerously few liaisons:
a review of mate-finding Allee effects. Popul Ecol 51:355–372.
https://doi.org/10.1007/s10144-009-0146-4

Gotelli NJ (1991)Metapopulationmodels: the rescue effect, the propag-
ule rain, and the core-satellite hypothesis. Am Nat 138(3):768–
776. https://doi.org/10.1086/285249

Grumbach C, Reurik FN, Segura J et al (2023) The effect of dispersal on
asymptotic total population size in discrete-and continuous-time
two-patch models. J Math Biol 87(4):60. https://doi.org/10.1007/
s00285-023-01984-8

Gyllenberg M, Hemminki J, Tammaru T (1999) Allee effects can
both conserve and create spatial heterogeneity in population den-
sities. Theor Popul Biol 56(3):231–242. https://doi.org/10.1006/
tpbi.1999.1430

Haddad NM, Brudvig LA, Damschen EI et al (2014) Potential negative
ecological effects of corridors. Conserv Biol 28(5):1178–1187.
https://doi.org/10.1111/cobi.12323

Hilker FM, Lewis MA (2010) Predator-prey systems in streams and
rivers. Theor Ecol 3:175–193. https://doi.org/10.1007/s12080-
009-0062-4

Holt RD (1985) Population dynamics in two-patch environments:
some anomalous consequences of an optimal habitat distribution.
Theor Popul Biol 28(2):181–208. https://doi.org/10.1016/0040-
5809(85)90027-9

Huisman J,ArrayásM,EbertU et al (2002)Howdo sinking phytoplank-
ton species manage to persist? Am Nat 159(3):245–254. https://
doi.org/10.1086/338511

IPBES (2019) Summary for policymakers of the global assessment
report on biodiversity and ecosystem services of the Intergovern-
mental Science-Policy Platform on Biodiversity and Ecosystem
Services. IPBES secretariat, Bonn, Germany. https://doi.org/10.
5281/zenodo.3831673

Kang Y (2013) Scramble competitions can rescue endangered species
subject to strong Allee effects. Math Biosci 241(1):75–87. https://
doi.org/10.1016/j.mbs.2012.09.002

Kang Y (2015) Dynamics of a generalized Ricker–Beverton–Holt com-
petitionmodel subject toAllee effects. JDifferEqu22(5):687–723.
https://doi.org/10.1080/10236198.2015.113591

Kang Y, Armbruster D (2011) Dispersal effects on a discrete two-patch
model for plant-insect interactions. J Theor Biol 268(1):84–97.
https://doi.org/10.1016/j.jtbi.2010.09.033

Kerr JT (2020) Racing against change: understanding dispersal and per-
sistence to improve species’ conservation prospects. Proc Royal
Soc B 287(1939):20202,061. https://doi.org/10.1098/rspb.2020.
2061

Kierstead H, Slobodkin LB (1953) The size of water masses containing
plankton blooms. J Marine Res 12(1):141–147

Kirkland S, Li CK, Schreiber SJ (2006) On the evolution of dispersal in
patchy landscapes. SIAM J Appl Math 66(4):1366–1382. https://
doi.org/10.1137/050628933

KramerAM,DennisB,LiebholdAMet al (2009)The evidence forAllee
effects. Popul Ecol 51:341–354. https://doi.org/10.1007/s10144-
009-0152-6

Leroux SJ, Larrivée M, Boucher-Lalonde V et al (2013) Mechanistic
models for the spatial spread of species under climate change. Ecol
Appl 23(4):815–828. https://doi.org/10.1890/12-1407.1

Levins R (1969) Some demographic and genetic consequences of envi-
ronmental heterogeneity for biological control. Bull Entomol Soc
Am 15(3):237–240. https://doi.org/10.1093/besa/15.3.237

123

https://doi.org/10.1016/j.tpb.2015.10.001
https://doi.org/10.1016/j.tpb.2015.10.001
https://doi.org/10.1007/s10144-009-0154-4
https://doi.org/10.2307/1935620
https://doi.org/10.3934/math.2022034
https://doi.org/10.1016/S0169-5347(99)01683-3
https://doi.org/10.1093/acprof:oso/9780198570301.001.0001
https://doi.org/10.1093/acprof:oso/9780198570301.001.0001
https://doi.org/10.1088/1742-5468/ac4982
https://doi.org/10.1088/1742-5468/ac4982
https://doi.org/10.3934/mbe.2020090
https://doi.org/10.1016/0040-5809(79)90008-X
https://doi.org/10.3390/math8010049
https://doi.org/10.3934/dcdsb.2014.19.3087
https://doi.org/10.1007/s11538-021-00927-y
https://doi.org/10.1007/s11538-021-00927-y
https://doi.org/10.1111/j.1939-7445.1989.tb00119.x
https://doi.org/10.1111/j.1939-7445.1989.tb00119.x
https://doi.org/10.1890/1051-0761(2002)012[0346:EOHFOT]2.0.CO;2
https://doi.org/10.1890/1051-0761(2002)012[0346:EOHFOT]2.0.CO;2
https://doi.org/10.1146/annurev-ecolsys-110316-022612
https://doi.org/10.1146/annurev-ecolsys-110316-022612
https://doi.org/10.1016/j.biocon.2018.12.026
https://doi.org/10.1006/jtbi.2002.3051
https://doi.org/10.1006/jtbi.2002.3051
https://doi.org/10.1016/j.biocon.2018.07.022
https://doi.org/10.1016/j.biocon.2018.07.022
https://doi.org/10.1016/j.jtbi.2015.01.029
https://doi.org/10.1016/j.jtbi.2015.01.029
https://doi.org/10.1137/0132052
https://doi.org/10.1137/0132052
https://doi.org/10.2307/1934583
https://doi.org/10.1016/j.tpb.2022.05.003
https://doi.org/10.1016/j.tpb.2022.05.003
https://doi.org/10.1007/s10144-009-0146-4
https://doi.org/10.1086/285249
https://doi.org/10.1007/s00285-023-01984-8
https://doi.org/10.1007/s00285-023-01984-8
https://doi.org/10.1006/tpbi.1999.1430
https://doi.org/10.1006/tpbi.1999.1430
https://doi.org/10.1111/cobi.12323
https://doi.org/10.1007/s12080-009-0062-4
https://doi.org/10.1007/s12080-009-0062-4
https://doi.org/10.1016/0040-5809(85)90027-9
https://doi.org/10.1016/0040-5809(85)90027-9
https://doi.org/10.1086/338511
https://doi.org/10.1086/338511
https://doi.org/10.5281/zenodo.3831673
https://doi.org/10.5281/zenodo.3831673
https://doi.org/10.1016/j.mbs.2012.09.002
https://doi.org/10.1016/j.mbs.2012.09.002
https://doi.org/10.1080/10236198.2015.113591
https://doi.org/10.1016/j.jtbi.2010.09.033
https://doi.org/10.1098/rspb.2020.2061
https://doi.org/10.1098/rspb.2020.2061
https://doi.org/10.1137/050628933
https://doi.org/10.1137/050628933
https://doi.org/10.1007/s10144-009-0152-6
https://doi.org/10.1007/s10144-009-0152-6
https://doi.org/10.1890/12-1407.1
https://doi.org/10.1093/besa/15.3.237


    5 Page 16 of 16 Theoretical Ecology             (2025) 18:5 

Lutscher F, Pachepsky E, Lewis MA (2005) The effect of dispersal
patterns on stream populations. SIAMRev 47(4):749–772. https://
doi.org/10.1137/05063615

Maciel GA, Lutscher F (2015) Allee effects and population spread in
patchy landscapes. J Biol Dyn 9(1):109–123. https://doi.org/10.
1080/17513758.2015.1027309

Matter SF (2001) Synchrony, extinction, and dynamics of spatially seg-
regated, heterogeneous populations. Ecol Model 141(1–3):217–
226. https://doi.org/10.1016/S0304-3800(01)00275-7

Miller-Rushing AJ, Primack RB, Devictor V et al (2019) How does
habitat fragmentation affect biodiversity? A controversial question
at the core of conservation biology. Biol Conserv 232:271–273.
https://doi.org/10.1016/j.biocon.2018.12.029

Nguyen TD, Wu Y, Veprauskas A et al (2023) Maximizing metapopu-
lation growth rate and biomass in stream networks. SIAM J Appl
Math 83(6):2145–2168. https://doi.org/10.1137/23M1556757

Pal D, Samanta G (2018) Effects of dispersal speed and strong Allee
effect on stability of a two-patch predator-prey model. Int J Dyn
Control 6:1484–1495. https://doi.org/10.1007/s40435-018-0407-
1

Potapov AB, Lewis MA (2004) Climate and competition: the effect of
moving range boundaries on habitat invasibility. Bull Math Biol
66:975–1008. https://doi.org/10.1016/j.bulm.2003.10.010

Ryabov AB, Blasius B (2008) Population growth and persistence in a
heterogeneous environment: the role of diffusion and advection.
Math Model Nat Phenom 3(3):42–86. https://doi.org/10.1051/
mmnp:2008064

Saha S, Samanta G (2019) Influence of dispersal and strong Allee effect
on a two-patch predator-prey model. Int J Dyn Control 7:1321–
1349. https://doi.org/10.1007/s40435-018-0490-3

Sato K (2009) Allee threshold and extinction threshold for spatially
explicit metapopulation dynamics with Allee effects. Popul Ecol
51:411–418. https://doi.org/10.1007/s10144-009-0156-2

Schreiber SJ (2003) Allee effects, extinctions, and chaotic transients
in simple population models. Theor Popul Biol 64(2):201–209.
https://doi.org/10.1016/S0040-5809(03)00072-8

Shigesada N, Okubo A (1981) Analysis of the self-shading effect on
algal vertical distribution in natural waters. J Math Biol 12:311–
326. https://doi.org/10.1007/BF00276919

SimberloffD,Cox J (1987)Consequences and costs of conservation cor-
ridors. Conserv Biol 1(1):63–71. https://doi.org/10.1111/j.1523-
1739.1987.tb00010.x

Skellam JG (1951) Random dispersal in theoretical populations.
Biometrika 38(1/2):196–218. https://doi.org/10.2307/2332328

Soanes K, Rytwinski T, Fahrig L et al (2024) Do wildlife crossing
structuresmitigate the barrier effect of roads on animalmovement?
A global assessment. J Appl Ecol 61(3):417–430. https://doi.org/
10.1111/1365-2664.14582

Speirs DC, Gurney WSC (2001) Population persistence in rivers and
estuaries. Ecol 82(5):1219–1237. https://doi.org/10.1890/0012-
9658(2001)082[1219:PPIRAE]2.0.CO;2

Sun GQ (2016) Mathematical modeling of population dynamics with
Allee effect. Nonlinear Dyn 85:1–12. https://doi.org/10.1007/
s11071-016-2671-y

Tewksbury JJ, Levey DJ, Haddad NM, et al (2002) Corridors affect
plants, animals, and their interactions in fragmented landscapes.
Proc Natl Acad Sci 99(20):12923–12926. https://doi.org/10.1073/
pnas.202242699

TurnerMG, Gardner RH, O’neill RV, et al (2001) Landscape ecology in
theory and practice. Springer, New York. https://doi.org/10.1007/
b97434

Van Schmidt ND, Beissinger SR (2020) The rescue effect and inference
from isolation-extinction relationships. Ecol Lett 23(4):598–606.
https://doi.org/10.1111/ele.13460

Vance RR (1980) The effect of dispersal on population size in a tem-
porally varying environment. Theor Popul Biol 18(3):343–362.
https://doi.org/10.1016/0040-5809(80)90058-1

Vortkamp I, Schreiber SJ, Hastings A et al (2020) Multiple attractors
and long transients in spatially structured populationswith anAllee
effect. Bull Math Biol 82:1–21. https://doi.org/10.1007/s11538-
020-00750-x

Vortkamp I, Kost C, Hermann M, et al (2022) Dispersal between inter-
connected patches can reduce the total population size. bioRxiv
2022.04.28.489935. https://doi.org/10.1101/2022.04.28.489935

Wang W (2016) Population dispersal and Allee effect. Ricerche Mat
65(2):535–548. https://doi.org/10.1007/s11587-016-0273-0

Watts ME, Ball IR, Stewart RS et al (2009) Marxan with zones: soft-
ware for optimal conservation based land-and sea-use zoning.
EnvironModel Softw 24(12):1513–1521. https://doi.org/10.1016/
j.envsoft.2009.06.005

White ER, Baskett ML, Hastings A (2021) Catastrophes, connectivity
and Allee effects in the design of marine reserve networks. Oikos
130(3):366–376. https://doi.org/10.1111/oik.07770

Zhang B, Kula A, Mack KM et al (2017) Carrying capacity in a
heterogeneous environment with habitat connectivity. Ecol Lett
20(9):1118–1128. https://doi.org/10.1111/ele.12807

123

https://doi.org/10.1137/05063615
https://doi.org/10.1137/05063615
https://doi.org/10.1080/17513758.2015.1027309
https://doi.org/10.1080/17513758.2015.1027309
https://doi.org/10.1016/S0304-3800(01)00275-7
https://doi.org/10.1016/j.biocon.2018.12.029
https://doi.org/10.1137/23M1556757
https://doi.org/10.1007/s40435-018-0407-1
https://doi.org/10.1007/s40435-018-0407-1
https://doi.org/10.1016/j.bulm.2003.10.010
https://doi.org/10.1051/mmnp:2008064
https://doi.org/10.1051/mmnp:2008064
https://doi.org/10.1007/s40435-018-0490-3
https://doi.org/10.1007/s10144-009-0156-2
https://doi.org/10.1016/S0040-5809(03)00072-8
https://doi.org/10.1007/BF00276919
https://doi.org/10.1111/j.1523-1739.1987.tb00010.x
https://doi.org/10.1111/j.1523-1739.1987.tb00010.x
https://doi.org/10.2307/2332328
https://doi.org/10.1111/1365-2664.14582
https://doi.org/10.1111/1365-2664.14582
https://doi.org/10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2
https://doi.org/10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2
https://doi.org/10.1007/s11071-016-2671-y
https://doi.org/10.1007/s11071-016-2671-y
https://doi.org/10.1073/pnas.202242699
https://doi.org/10.1073/pnas.202242699
https://doi.org/10.1007/b97434
https://doi.org/10.1007/b97434
https://doi.org/10.1111/ele.13460
https://doi.org/10.1016/0040-5809(80)90058-1
https://doi.org/10.1007/s11538-020-00750-x
https://doi.org/10.1007/s11538-020-00750-x
https://doi.org/10.1101/2022.04.28.489935
https://doi.org/10.1007/s11587-016-0273-0
https://doi.org/10.1016/j.envsoft.2009.06.005
https://doi.org/10.1016/j.envsoft.2009.06.005
https://doi.org/10.1111/oik.07770
https://doi.org/10.1111/ele.12807

	Allee pits in metapopulations: critical dispersal rates for connectivity to be beneficial
	Abstract
	Introduction
	Setting the stage
	Model description
	Isolated patches with Allee effect
	Connected patches without Allee effect
	Connected patches with Allee effect

	Results
	Rescue effects and Allee pits
	Impact of the Allee effect on the response scenarios
	The width and depth of Allee pits

	Discussion and conclusions
	Appendix A: Numerical methods
	A.1 Methods for Fig. 4
	A.2 Methods for Fig. 6

	Appendix B: The inverse rescue effect
	Acknowledgements
	References


