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1. Introduction41

Human activities are posing severe threats to wildlife species globally. For42

example, exploitation is recognised as the primary threat to species in marine43

ecosystems and the second greatest threat to those in terrestrial and freshwa-44

ter ecosystems [1]. Another specific terrestrial example is the disruption of45

ungulate dispersal routes caused by human-made barriers, such as roads, rail-46

roads, pipelines and reservoirs. This disruption has led to significant declines47

in several species across Africa and Central Asia [2].48

Establishing marine reserves and terrestrial protected areas is widely con-49

sidered a viable strategy for preserving biodiversity effectively and sustain-50

ably. For instance, marine reserve models have been shown to increase fish51

biomass and mitigate the cumulative impacts of human activities such as52

harvesting in aquatic environments [3]. Furthermore, a recent meta-analysis53

indicates that fish biomass is, on average, 670% higher in marine reserves54

compared to unprotected areas [4]. The spillover effect from protected areas55

also boosts catches in adjacent harvested areas, as evidenced by data for56

the lobster Palinurus elephas in the Columbretes Islands marine reserve [5].57

Similarly, terrestrial examples highlight the importance of protected areas.58

For example, hunting caused declines in the Garnet mountain lion population59

in Montana. After harvest closures, this population rebounded, enhancing60

emigration and metapopulation growth [6]. Additionally, there have been61

notable developments at the political level: the Convention on Biological Di-62

versity established the “30 by 30 target” which aims to ensure that by 2030,63

at least 30% of terrestrial, inland water and marine and coastal areas are64

under effective restoration to enhance biodiversity [7].65

Mathematical modelling is an indispensable tool in wildlife and ecosys-66

tem management, providing a structured method to explore how individual67

decisions impact broader ecological systems [8]. By investigating various sce-68

narios, models can help identify unexpected outcomes that might hinder the69

achievement of conservation and management objectives.70

Spatial harvesting models often focus on economic aspects, such as max-71

imising yield or profit, when discussing the optimal harvesting policy [9, 10,72

11, 12]. It is also well established that habitat heterogeneity [13, 14] and con-73

nectivity between habitats [15] are crucial factors to consider when aiming74

to protect biomass and biodiversity. Connectivity between habitats can be75

influenced by various measures, such as stepping stones and dispersal corri-76

dors, which can be modelled in mathematical frameworks through dispersal77
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variation. The role of dispersal has been examined in previous research,78

including a focus on age-structured dispersal patterns [16, 17] or dispersal79

distance [18].80

However, the impact of dispersal strength and therefore connectivity re-81

mains unclear. Recent mathematical modelling has focused on the effects82

of increasing dispersal on the asymptotic total population size in two-patch83

models without harvesting [19, 20, 21, 22], showing that dispersal can be84

beneficial or detrimental, depending on its strength. Furthermore, exper-85

imental results on the impact of increased dispersal on the total popula-86

tion size confirm these modelling results: some studies report positive effects87

(e.g., yeast-like fungus Aureobasidium pullulans [23], budding yeast Saccha-88

romyces cerevisiae [24]), while others report initially positive then negative89

effects (e.g., Escherichia coli [25]) or insignificant effects (e.g., Drosophila90

melanogaster [26]).91

This leads to our research question: How do total population size and92

yield respond to increasing connectivity in a two-patch framework, where93

one patch is protected and the other one is harvested? We show that there94

are a total of five qualitative response scenarios of the asymptotic total pop-95

ulation size to increasing dispersal. Additionally, the asymptotic yield re-96

sponds with three different qualitative behaviours to increasing dispersal.97

We investigate how these responses are influenced by the heterogeneity of the98

patches, examining whether larger or smaller, and faster- or slower-growing99

protected patches yield different outcomes. Increasing harvest pressure al-100

ters the conditions for these responses to increased dispersal. Proportional101

harvesting results in the harvested patch being effectively smaller (reduced ef-102

fective capacity) and exhibiting lower productivity (reduced effective growth103

rate). Overharvesting can cause a patch, when considered in isolation, to104

become non-persistent, turning it into a sink. Thus, when the larger patch105

is harvested, it becomes effectively the smaller patch, and with more intense106

harvesting, the initially larger patch transforms into an effective sink patch.107

Correspondingly, initial source–source dynamics in the absence of harvesting108

transforms into effective source–sink dynamics in the presence of sufficiently109

strong harvesting. Additionally, we interpret how increasing harvest pressure110

changes the parameter domains of the qualitatively different responses of the111

total population size and the yield to increasing dispersal.112
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2. Methods113

In this Section, model equations for a two-patch model with density-114

dependent growth and proportional harvesting in both discrete and continu-115

ous time are presented. Secondly, we introduce effective parameters derived116

from proportional harvesting in a single population.117

2.1. Model equations118

The general structure of the system is described in Fig. 1. We consider two119

subpopulation sizes denoted NA and NB, which are linked by symmetric dis-120

persal, which means that the dispersal intensity is identical in both directions.121

Each subpopulation follows an associated growth function characterised by122

intrinsic growth and carrying capacity (or intraspecific competition) param-123

eters, exhibiting negative density dependence. Specifically, continuous-time124

logistic growth and its discrete-time counterpart, Beverton-Holt dynamics,125

are utilised. Additionally, one subpopulation is subject to proportional har-126

vesting. Without loss of generality, we choose patch A to be the harvested127

patch and patch B to be the protected patch.

NA NBδfA(NA) fB(NB)

hA

Figure 1: Two-patch model: the subpopulations NA and NB reproduce with growth func-
tions fA(NA) and fB(NB), respectively. Individuals can move between the patches with
symmetric dispersal (δ). Patch A is subject to proportional harvesting (hA), while patch
B is protected.

128

Discrete-time models are commonly used for populations with seasonal129

reproduction and the dynamics follow a chronological order. Here, the species130
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reproduces and is harvested before dispersal occurs:131

NAd
(t+ 1) = (1− δd)(1− hAd

)fAd
+ δdfBd

,

NBd
(t+ 1) = (1− δd)fBd

+ δd(1− hAd
)fAd

.
(1)

The subpopulations Nid(t) at time step t ∈ N disperse with discrete-time dis-132

persal proportion δd ∈ [0, 0.5] and reproduce with separate growth functions133

fid in patches i =A,B (the subscript “i” will henceforth denote patches A and134

B). Patch A is subject to proportional harvest with proportion hAd
∈ [0, 1].135

We have used the subscript “d” to signify the discrete-time setting and136

the notation fid := fid(Nid(t)) to simplify the exposition. The yield reads137

Yd(t+ 1) = hAd
fAd

.138

The continuous-time model reads139

dNAc

dt
= fAc + δc(NBc −NAc)− hAcNAc ,

dNBc

dt
= fBc + δc(NAc −NBc),

(2)

with subpopulation sizes Nic at time t ∈ R+. A consistent notation is used,140

where all continuous-time variables and parameters are identified by the sub-141

script “c”, distinguishing them from their discrete-time counterparts, with142

the dispersal rate δc ≥ 0 and the harvest rate hc ≥ 0. The yield reads143

Yc(t) = hAcNAc(t). Whenever parameters or variables are not explicitly la-144

belled with “c” or “d”, the statement applies to both time frameworks.145

Dispersal is limited within the range of isolation (δ = 0) to perfect mixing146

(the number of individuals in patches A and B is balanced). In discrete time,147

perfect mixing is reached when the dispersal proportion equals δd = 0.5, while148

in continuous time δc → ∞ leads to a perfectly mixed total population.149

Each subpopulation reproduces independently. In the discrete-time model,150

we employ the Beverton–Holt dynamics151

fd(Nd) =
rdNd

1 + ( rd−1
Kd

)Nd

. (3)

In the continuous-time model, the logistic growth function is used152

fc(Nc) = rcNc

(
1− Nc

Kc

)
. (4)
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In both growth functions, r represents the intrinsic growth rate and K de-153

notes the carrying capacity.154

All parameters are positive. In the absence of harvest, both patches act155

as sources, approaching their carrying capacity in isolation. This implies that156

in both patches the intrinsic growth rate is rd > 1 in discrete time and rc > 0157

in continuous time. Both growth functions encapsulate intraspecific compe-158

tition, quantified by cd = rd−1
Kd

in discrete time and cc = rc
Kc

in continuous159

time.160

2.2. Proportional harvesting in a single population161

This recap of proportional harvesting in a single population introduces ef-162

fective parameters that incorporate the impact of harvesting into the growth163

functions. These parameters simplify the model equations and readily show164

whether these are effective source–source or source–sink dynamics.165

In discrete time, the population size of a single population that is subject166

to proportional harvesting follows167

Nt+1d = (1− hd)
rdNtd

1 + rd−1
Kd

Ntd

:= Fd(Ntd). (5)

We can rewrite Fd(Ntd) by including the harvesting parameter into the168

growth function and identify an effective growth rate and an effective carrying169

capacity:170

r̃d = (1− hd)rd,

K̃d = Kd

(
1− rd

rd − 1
hd

)
.

Then Eq. (5) can be written as Nt+1d = f̃d(Nd) where f̃d(Nd) =
r̃dNd

1+
r̃d−1

K̃d
Nd

is171

the effective growth function. The asymptotic population size reads172

N∗
d =

{
K̃d if hd < h2d ,

0 else,

where h2d = 1 − 1
rd

represents the critical harvesting threshold. Sustain-173

able harvesting (hd < h2d) leads to the asymptotic yield Y ∗
d (hd) = hdK̃d.174

Overharvesting (hd > h2d) leads to population extinction and zero yield; ad-175

ditionally, the effective growth rate becomes less than one and the effective176

carrying capacity becomes negative.177
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We adopt the same procedure to find effective parameters in continuous178

time. The differential equation for a single population with proportional179

harvesting is180

dNc

dt
= rcNc

(
1− Nc

Kc

)
− hcNc := Fc(Nc). (6)

The effective parameters read181

r̃c = rc − hc,

K̃c = Kc

(
1− hc

rc

)
.

Then Eq. (6) can be written as dNc

dt
= f̃c(Nd) where f̃c(Nc) = r̃cNc

(
1− Nc

K̃c

)
182

is the effective growth function. The asymptotic population size read183

N∗
c =

{
K̃c if hc < h2c ,

0 else,

where h2c = rc represents the the critical harvesting rate. When harvesting184

sustainably (hc < h2c) the asymptotic yield reads Y ∗
c (hc) = hcK̃c and zero185

otherwise. In contrast to the discrete-time model, the effective growth rate186

and the effective carrying capacity become negative when overharvested.187

In both time frameworks, intraspecific competition remains uninfluenced188

by harvesting as harvest terms cancel each other c̃d = r̃d−1

K̃d
= rd−1

Kd
= cd in189

discrete time and c̃c =
r̃c
K̃c

= rc
Kc

= cc in continuous time.190

Figure 2 illustrates f̃(N) for three scenarios: no harvesting (blue), sus-191

tainable harvesting (solid red), and overharvesting (dashed red). The effec-192

tive growth rates can be derived from the slope in the origin and the effective193

carrying capacity from the intersection with the grey dashed line.194

In the two-patch model, if one patch is harvested such that the popu-195

lation would persist in isolation, this case is termed effective source–source196

dynamics. Conversely, when one patch is overharvested to the extent that197

it would become extinct if isolated, it is referred to as effective source–sink198

dynamics.199
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0 K̃d Kd
Nd(t)

0

K̃d

Kd

N
d(
t+

1) harvesting

(a) Discrete time
no harvesting
sustainable harvesting
overharvesting

0 K̃c Kc
Nc

0

dN
c/d

t

harvesting

(b) Continuous time

Figure 2: Three qualitative different scenarios resulting from proportional harvesting in
(a) discrete-time model with Beverton–Holt growth and (b) continuous time with logistic
growth: no harvesting (blue), sustainable harvesting, i.e., effective source dynamics (solid
red), and overharvesting, i.e., effective sink dynamics (dashed red). The filled circles mark
positive equilibria. The grey dashed line indicates the stationarity condition in each time
framework.
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3. Asymptotic total population size200

In this Section, we analyse the qualitative behaviour of the ATPS in re-201

sponse to increasing dispersal when harvesting one patch. The asymptotic202

subpopulations sizes are denoted as N∗
A and N∗

B. We will compare the asymp-203

totic total population size ATPS = N∗
A+N∗

B when the patches are connected204

to the ATPS when the patches are in isolation. The latter reference value is205

denoted as ATPS0.206

In the effective source–source scenario (i.e., rid > 1, ric > 0), in the absence207

of dispersal, the equilibrium is given by ATPS0 = K̃A+KB for all initial con-208

ditions. When connected, a globally stable and unique fixed point emerges209

within a dispersal range from isolation to perfect mixing (proven by [22] in210

discrete time and by [27] in continuous time).211

Now, let us consider the source–sink scenario where patch A goes extinct in212

isolation (i.e., r̃Ad
< 1, r̃Ac < 0) while patch B remains a source (i.e., r̃Bd

>213

1, r̃Bc > 0). Without dispersal, the equilibrium is given by ATPS0 = KB214

for all initial conditions. When connected, a unique positive equilibrium is215

approached or the ATPS is doomed to extinction. In continuous time,216

• the positive equilibrium is approached by all nonzero initial conditions217

if |r̃Ac | ≤ rBc or if |r̃Ac | > rBc with δc < δcritc .218

• All initial conditions will lead to extinction if |r̃Ac | > rBc with δc ≥ δcritc .219

In discrete time,220

• the positive equilibrium is approached by all nonzero initial conditions221

if 2 < r̃Ad
+ rBd

or if 2 ≥ r̃Ad
+ rBd

with δd < δcritd .222

• All initial conditions will lead to extinction if 2 ≥ r̃Ad
+ rBd

with δd ≥223

δcritd .224

We identify a total of five distinct response scenarios of the ATPS to increas-225

ing dispersal that arise in both discrete-time and continuous-time frame-226

works. Here, we will provide a concise overview of these response scenarios;227

detailed information and proofs can be found in Appendix A (discrete time)228

and Appendix B (continuous time) . We will describe the impact of dispersal229

on the ATPS as beneficial if the ATPS exceeds the reference value ATPS0 or230

detrimental if it falls below.231

9



MB Monotonically beneficial (see Fig. 3(a)): The effect of dispersal is al-232

ways beneficial, and the ATPS increases monotonically with increasing233

dispersal.234

UB Unimodally beneficial (see Fig. 3(b)): The effect of dispersal is ben-235

eficial for all dispersal intensities, with the ATPS increasing until it236

reaches a global maximum; beyond that point, the ATPS begins to237

decrease.238

BTD Beneficial turning detrimental (see Fig. 3(c)): The ATPS is positive239

for all dispersal intensities. Low dispersal intensity has a beneficial240

effect, but once a certain threshold is exceeded, the ATPS falls below241

the reference value, turning the effect detrimental.242

MD Monotonically detrimental (see Fig. 3(d)): The ATPS is positive for all243

dispersal intensities. The effect of dispersal is always detrimental and244

the ATPS decreases monotonically with increasing dispersal.245

E Extinction (see Fig. 3(e)): The ATPS decreases monotonically as dis-246

persal increases and drops to zero at a certain dispersal threshold.247

Figure 3: Sketch of each response scenario of the asymptotic total population size (ATPS)
to dispersal in discrete and continuous time. The solid line represents the ATPS when
dispersal varies from isolation to perfect mixing. The dashed grey line shows the reference
value of the ATPS0. There are three key dispersal values: δmax leading to maximum ATPS,
the threshold δ† at which dispersal impact turns from beneficial to detrimental, and the
critical dispersal value δcrit where the ATPS equals zero. The five response scenarios can be
classified into three categories “The more connectivity the better”, “Medium connectivity
is best” and “Keep the patches isolated”.
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As can be seen in Fig. 3, we classified the response scenarios into three key248

statement about connectivity: “The more connectivity the better”, “Medium249

connectivity is best” and “Keep the patches isolated”. In the following, we250

present parameter conditions for the qualitatively different response scenar-251

ios, delineate their parameter domains and provide a mechanistic interpreta-252

tion in different parameter scenarios.253

3.1. Harvesting the small patch254

We assume the smaller patch A is subject to proportional harvesting,255

while the larger patch B is designated as the protected patch.256

3.1.1. Effective source–sink dynamics257

Here, we determine the conditions for the five response scenarios through258

a graphical analysis applicable to both discrete– and continuous–time frame-259

works. In the effective source–sink scenario, the harvested patch A goes260

extinct N∗
A = 0 and the protected patch B approaches its carrying capac-261

ity N∗
B = KB > 0 in isolation. Therefore, the reference value becomes262

ATPS0 = KB.263

The five response scenarios can be distinguished using four criteria (C1 -264

C4) outlined in Tab. 1. The table provides precise conditions for each crite-265

rion and associates them with specific response scenarios, applicable to both266

continuous- and discrete-time models. The origin of these conditions will be267

explained in detail in the following graphical analysis.268

269

Graphical analysis. This graphical approach explains the origin of the pa-270

rameter conditions of each response scenario from Table 1. Consider local271

growth in each patch in the discrete-time setting in Fig. 4(a) and in the272

continuous-time setting Fig. 4(b). In discrete time, growth is defined by273

subtracting the population size in next iteration step from the the current274

population size275

Gd(N) = fd(Nd)−Nd,

while in continuous time growth is simply given by276

Gc(Nc) = fc(Nc).
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Table 1: Parameter conditions for the five response scenarios within an (effective) source–
sink environment derived from the graphical analysis. These conditions apply to both
the discrete-time model with Beverton–Holt growth and the continuous-time model with
logistic growth, except that the monotonically detrimental response scenario does not
occur in continuous time. The criteria are based on the growth of each patch GA(NA) and
GB(NB) and the asymptotic population size of both patches when perfectly mixed N∗

P .
Further explanation is provided in the text.

Response
scenarios

Criteria
Positive
equilibrium exists
at perfect mixing (C1)

Positive slope
at zero dispersal (C4)

Beneficial
at perfect
mixing (C2)

Positive slope
at perfect mixing (C3)

MB
Monotonically
beneficial

if
|G′

A(0)| < |G′
B(0)|

if
|G′

A(0)| < |G′
B(KB)|

if
N∗

P > KB
2

if
|G′

A(N∗
P )| ≤ |G′

B(N
∗
P )|

UB
Unimodally
beneficial

else

BTD
Beneficial
turning
detrimental

else

MD
Monotonically
detrimental

else

E
Extinction

else

12



In patch A, we utilize the effective growth function f̃A(NA) to incorporate the277

impact of harvesting. We express the discrete-time model (1) and continuous-278

time model (2) using the total population size:279

NAt+1,d
+NBt+1,d

= f̃Ad
+ fBd

,

d

dt
(NAc +NBc) = f̃Ac + fBc ,

(7)

and the difference in population sizes between the patches:280

NBt+1,d
−NAt+1,d

= (1− 2δd)(fBd
− f̃Ad

),

d

dt
(NBc −NAc) = (fBc − f̃Ac) + 2δc(NAc −NBc).

(8)

where we have used the notationfi := fi(Ni) to simplify the exposition. At281

equilibrium, Eq. (7) in both discrete and continuous time leads to282

GA(N
∗
A) +GB(N

∗
B) = 0, (9)

for equilibrium values N∗
A and N∗

B assuming N∗
A ̸= N∗

B. Eq. (8) leads to283

GB(N
∗
B)−GA(N

∗
A)

N∗
B −N∗

A

=

{
2δd

1−2δd
in discrete time, and

2δc in continuous time.
(10)

There are infinitely many pairs of populations sizes N∗
A and N∗

B for which284

Eq. (9) and (10) hold, e.g. those connected by the black arrows in Fig. 4.285

The first equilibrium condition Eq. (9) means that the total population size286

remains constant when the growth of patch B compensates the decline in287

patch A, so whenever the vertical distances to the horizontal axis of GA288

and GB are equal. The second equilibrium condition Eq. (8) imposes the289

slope of the arrow connecting the two equilibrial points (N∗
A, GA(N

∗
A)) and290

(N∗
B, GB(N

∗
B)) to the given values of Eq. (10).291

Using this graphical approach, we can derive the following insights.292

• When isolated (δ = 0), the population in patch A goes extinct (N∗
A = 0)293

while patch B’s population approaches its carrying capacity (N∗
B =294

KB). The slope of the line connecting the pair (0, 0) and (KB, 0) equals295

zero as shown in Eq. (10).296
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0 KBd/2 KBd
Nd(t)

0

N
d(
t+

1)
−
N
d(
t)

y

y
xB

xA

GAd

GBd

−GAd

N *
Pd

(a) Discrete time

0 KBc/2 KBc
Nc

0

dN
c/d

t

y y
xB

xA

GAc

GBc

−GAc

N *
Pc

(b) Continuous time

Figure 4: The growth functions of patches A (red) and B (blue) using (a) the Beverton–
Holt function in discrete time and (b) the logistic function in continuous time in the
monotonically beneficial response scenario. Infinitely many equilibrium pairs (N∗

A,N
∗
B)

can be found by connecting two points on the bold segments of each patch, e.g. those
connected by the black arrows. Two equilibrium conditions must be satisfied: 1) same
vertical axis distance for GA and GB, and 2) connecting arrows with slope 2δd

1−2δd
in discrete

time and 2δc in continuous time. The vertical arrow indicates perfect mixing (where
N∗

A = N∗
B := N∗

P) found at the intersection of GB and −GA. The intersections of the
connecting arrows with the horizontal axis denotes half of the ATPS for that particular
pair. The parameter values for (a) are rAd

= 2, rBd
= 26 KAd

= 40, KBd
= 60, hd = 0.55

and for (b) rAc
= 2, rBc

= 11 KAc
= 40, KBc

= 60, hc = 2.1. Both scenarios correspond
to the monotonically beneficial response scenario.

• When perfectly mixed (δd = 0.5, δc → ∞), the population sizes in297

patches A and B equalise (N∗
A = N∗

B := N∗
P). The equilibrium popula-298

tion sizes can be determined where the growth functions GB and −GA299

intersect. The connecting vertical has an infinite slope, as shown in300

Eq. (10).301

Combining these two scenarios and considering dispersal ranging from zero302

to perfect mixing, all possible equilibrium population pairs must lie on the303

thickly marked parts of their growth functions. This constitutes a graphical304

procedure to find the equilibrium population sizes in the two patches: find a305

pair of points where GB(NB) = −GA(NA) and connect them by a line with306

the slope associated with dispersal.307
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Now, we can derive the four criteria introduced in Tab. 1.308

C1 Positive equilibrium exists at perfect mixing. A positive ATPS309

equilibrium at perfect mixing (i.e., N∗
P > 0) exists if and only if there310

is an intersection between −GA and GB in the positive quadrant. This311

intersection occurs when the slope of −GA (red dotted line) is less312

steep than the slope of GB (blue solid line) in the origin, i.e., |G′
A(0)| <313

|G′
B(0)|. If this condition is not met, both populations will go extinct314

at perfect mixing because there will be no intersection except in the315

origin where −GA = GB.316

The arrow connecting an equilibrium pair intersects the horizontal axis, and317

the N value at this intersection represents half of the ATPS for that signif-318

icant pair. When this value exceeds half of the reference value KB/2, the319

effect of dispersal on the ATPS is beneficial. In contrast, if the value is less320

than KB/2, the impact of dispersal is detrimental.321

C2 Beneficial at perfect mixing. Half of the ATPS at perfect mixing322

is represented by N∗
P. If N∗

P exceeds KB/2, the ATPS exceeds the323

reference value, indicating a beneficial effect. Otherwise, the effect on324

the ATPS is detrimental at perfect mixing.325

C3 Positive slope at perfect mixing. An equilibrium pair with disper-326

sal close to perfect mixing leads to a smaller ATPS than dispersal at327

perfect mixing. Figure 4(a) shows a slope triangle from N∗
P (at perfect328

mixing) to an equilibrium pair close to perfect mixing. The associ-329

ated arrow intersects the horizontal axis to the left of N∗
P indicating330

a smaller ATPS close to perfect mixing. The vertical component y of331

the slope triangle must be equal for both patches (see Eq. (9)). There-332

fore, increasing the slope at Gi(N
∗
P) decreases the associated horizontal333

component xi. If xA > xB, the intersection of an equilibrium pair close334

to perfect mixing occurs to the left of N∗
P, implying that the ATPS335

increases locally when |G′
A(N

∗
P)| < |G′

B(N
∗
P)|.336

C4 Positive slope at zero dispersal. See Fig. 4(b), if the slope of GA in337

the origin is smaller than the slope of GB at KB, then the intersection is338

positioned to the right of KB/2. In other words, if |G′
A(0)| < |G′

B(KB)|,339

then the ATPS increases when dispersal is introduced into an isolated340

system.341
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Using these four criteria, we can identify the five different response scenarios342

as introduced in Tab. 1.343

344

Comparison of discrete and continuous time. This graphical ap-345

proach has been applied analogously in both discrete- and continuous-time346

frameworks. When calculating the exact parameter conditions for each time347

setting, we find that there is no MD response scenario in the continuous-time348

source–sink model.349

The boundaries of the MD response scenario are determined by criteria350

C1 and C4:351

• In discrete time, C1 ensures that the ATPS remains persistent for all352

dispersal values δd ∈ [0, 0.5] if 2 ≤ r̃Ad
+rBd

. C4 states that if 1 > r̃Ad
rBd

353

the ATPS response is detrimental when dispersal is introduced to an354

isolated system. Thus, the MD scenario is defined by the condition355

2− rBd
≤ r̃Ad

< 1/rBd
.356

• In continuous time, C1 ensures that the ATPS remains persistent for357

all dispersal values δd > 0 if |r̃Ac| < |rBc |. C4 states for the exact same358

condition |r̃Ac | < |rBc| that the ATPS response is detrimental when359

introducing dispersal to an isolated system. Consequently, if the effect360

of dispersal is detrimental when introducing dispersal the ATPS will go361

extinct at perfect mixing. Thus, the monotonic detrimental response362

scenario does not exist in continuous time.363

This discrepancy arises from the shape of the logistic growth function, which364

forms a symmetric parabola due to its linear density dependence (see Fig. 4(b)).365

This symmetry implies that the slope of the growth function has the same366

absolute value at the origin and at its carrying capacity in the source patch367

leading to equal conditions from C1 and C4.368

3.1.2. Effective source–source dynamics369

If harvesting in patch A does not surpass the critical harvest threshold,370

above which the population faces extinction, we can consider an effective371

source–source scenario. In contrast to [14], we do not define a source as a372

net exporter, but in such a way that both source patches persist in isolation373

approaching the reference value ATPS = K̃A + KB. The two-patch model374

characterised by source–source dynamics was extensively analysed by [22].375
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We expand on their categorisation of response scenarios to include harvesting376

effects.377

Within the effective source–source scenario, there are the same response378

scenarios as in the effective source–sink scenario, except for the extinction379

scenario. Table 2 provides a synthesis of the parameter conditions, encom-380

passing both continuous-time and discrete-time models. The parameter con-381

ditions are delineated in terms of (effective) intrinsic growth rates, (effective)382

carrying capacities, and intraspecific competition coefficients, the latter being383

ratios of the former two parameters.384

Table 2: Parameter conditions for the four response scenarios within an (effective) source–
source scenario. The threshold value of κ̃ > 1 delineates the degree to which intraspecific
competition in patch B must exceed that of patch A to prompt the monotonically beneficial

response scenario. In discrete time the threshold is denoted as κ̃d = rB+
√
r̃ArB−2

r̃A+
√
r̃ArB−2

and in

continuous time as κ̃c =
r̃Ac+3rBc

rBc+3r̃Ac
.

Response Scenarios Criteria

MB
Monotonically beneficial

K̃A < KB

r̃A < rB

κ̃cA < cB

UB
Unimodally beneficial

cA < cB < κ̃cB

BTD
Beneficial turn. detrimental

cB < cA

MD
Monotonically detrimental

r̃A ≤ rB

3.1.3. Parameter domains of response scenarios385

Figure 5 shows the parameter domains of the response scenarios when386

varying the intensity of the harvest hA in the smaller patch A to investigate387

the impact of increasing the harvest. We also vary the intrinsic growth rate388

rB of the larger patch B, so that all response scenarios are represented. All389

other parameters remain constant. Figure 5(a) and (b) can be divided into390

two parts: As long as the harvesting intensity is below patch A’s critical391

harvest value h2, the system remains in an effective source–source scenario;392

left to the dashed vertical line and to the right, the system can be classified393

as an effective source–sink scenario.394

395

Within the effective source–source scenario (h ∈ [0, h2]), the parameter396

conditions are outlined in Tab. 2. We can observe the three boundaries397

shifting as harvesting increases:398
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Figure 5: Harvesting the small patch: the parameter domains for the five response scenar-
ios in (a) discrete time and (b) continuous time. The response scenarios are MB (mono-
tonically beneficial), UB (unimodally beneficial), BTD (beneficial turning detrimental),
MD (monotonically detrimental) and E (extinction). The parameter conditions of the
response scenarios in the source–source scenario (h ∈ [0, h2]) are defined in Tab. 2 and in
the source–sink scenario (h > h2) are defined by criteria C1-C4 in Tab. 1. The parameter
values are rA = 2, KA = 40, KB = 60.

• The MD response scenario emerges as long as r̃A ≤ rB. At zero harvest-399

ing, this boundary occurs at r̃A = rB = 2. Harvesting linearly reduces400

the intrinsic growth rate to r̃A = (1−hA)rA. Consequently, the bound-401

ary between response scenarios MD and BTD decreases linearly with in-402

creasing harvest intensity. This linear decrease continues until the crit-403

ical harvest value (h2) is reached. Then, the effective intrinsic growth404

rate equals the r–bifurcation point of patch A (r̃Ad
= 1, r̃Ac = 0).405

• The boundary between the BTD and UB response scenarios depends406

solely on the values of intraspecific competition which remain unchanged407

under harvesting. Thus, there is no boundary shift due to harvesting408

in the source–source scenario as depicted as a constant line in Fig. 5.409

• The boundary separating the response scenarios MB and UB is defined410

by the threshold value κ̃. When κ̃cA < cB, we are in the MB response411

scenario. However, as r̃A decreases due to harvesting, κ̃ increases, caus-412

ing the boundary to shift in favour of the UB response scenario (refer413

to Table 2 for the parameter conditions and exact κ̃ definition).414

The effective source–source scenarios appear qualitatively similar in the discrete-415
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time and continuous-time settings. The boundary between the MB and UB416

response scenarios differs due to the distinct formulations of κ̃ and intraspe-417

cific competition formulation.418

419

If the harvest value exceeds the critical harvest value of patch A (h >420

h2), there is an effective source–sink environment with parameter conditions421

outlined in Tab. 1. Recall that the reference value is now equal to the carrying422

capacity of patch B exclusively. Whenever the ATPS exceeds the carrying423

capacity (that is, beneficial effect), a rescue effect occurs from protected patch424

B to harvested patch A. As harvesting increases and the intrinsic growth rate425

in the larger patch B decreases, the response scenarios transition stepwise426

from MB to E (excluding MD in the continuous-time setting).427

In discrete time, total population extinction occurs under perfect mixing428

when the combined intrinsic growth rates of both patches do not exceed the429

threshold of 2 ≤ r̃Ad
+rBd

. The bifurcation point of the intrinsic growth rate,430

leading to extinction, is 1; therefore, both patches must achieve a combined431

growth rate of at least 2. Since r̃Ad
is limited to the range [0, 1) due to432

harvesting, the protected patch B must be sufficiently strong to compensate433

and exceed the threshold.434

In continuous time, the bifurcation point of the intrinsic growth is zero.435

Therefore, extinction at perfect mixing arises whenever the sink is stronger436

than the source: |r̃Ac | < |rBc |.437

3.2. Harvesting the large patch438

In this Section, we investigate the scenario where the harvested patch439

A is the one with the larger carrying capacity and the smaller patch B is440

protected.441

Figure 6 shows the parameter domains for this case. Similar to Fig. 5,442

we vary the intrinsic growth rate of the protected patch B and the harvest443

intensity in patch A. We find similar parameter domains in the effective444

source–sink region but distinct characteristics emerge in the effective source–445

source scenario, particularly for low harvesting values.446

Figure 6 can be divided into three ranges of harvesting values:447

• Harvesting the effectively larger patch, that is, h ∈ [0, h1]: the effec-448

tive carrying capacity of the initially larger patch A is diminished by449

harvesting, reaching a point where it becomes first equal to and then450

less than the carrying capacity of the protected patch B. This critical451
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juncture is denoted in the figure by h1, where KBd
= K̃Ad

. To the452

left of this threshold, patch A remains effectively the larger patch. As453

introduced in Tab. 2, the mathematical analysis of the effective source–454

source scenario assumes one patch to be larger than the other one; if455

the ratio is inverted, all conditions are also reversed.456

• Harvesting the effectively smaller patch in effective source–source dy-457

namics, that is, h ∈ (h1, h2): When crossing h1, harvesting effectively458

turns the initially larger patch A into the smaller patch, leading to459

analogous qualitative behaviours observed when harvesting the initially460

smaller patch. Consequently, the response scenarios are perfectly point461

reflected at h1.462

• Harvesting the effectively smaller patch in source–sink dynamics, i.e.,463

h2 < h: as harvesting is further increased, the harvested patch becomes464

a sink as harvesting reaches the critical harvest threshold h2.465

3.3. Mechanistic interpretation466

The parameter conditions for the five response scenarios are not only467

mathematically compelling but also biologically crucial, as they can signifi-468

cantly enhance our understanding of population dynamics in spatially frag-469

mented landscapes. To transform these analytical insights into effective man-470

agement strategies, it is essential to provide a biological interpretation and a471

clear explanation of the underlying biological mechanisms. In the following,472

we will explore these mechanisms in detail to explain the implications of the473

model.474

3.3.1. Harvesting the effectively larger patch475

If (h ∈ [0, h1]), there is a net migration from the larger harvested patch476

A to the smaller protected patch B. Figure 7(d) shows that as dispersal477

increases, the population size in patch B (blue) grows, while the population478

in patch A (red) decreases. This trend continues until perfect mixing is479

reached, where both patches harbour populations of equal size (the yield in480

Fig. 7 is discussed in Sec. 4). In this region, Fig. 6 illustrates a shift from481

the UB to the MB response scenarios and from the BTD to the MD response482

scenario as harvesting increases:483
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Figure 6: Harvesting the large patch: the parameter domains for the five response scenarios
in (a) discrete time and (b) continuous time. The response scenarios are MB (monoton-
ically beneficial), UB (unimodally beneficial), BTD (beneficial turning detrimental), MD
(monotonically detrimental) and E (extinction). There are three qualitatively different
harvesting ranges: Harvesting the effectively larger patch in effective source–source dy-
namics (h ∈ [0, h1]), Harvesting the effectively smaller patch in effective source–source
dynamics (h ∈ [h1, h2]), Harvesting the effectively smaller patch in effective source–sink
dynamics (h ∈ [h2,∞)). The parameter conditions of the response scenarios in the effec-
tive source–source scenario are given by Tab. 2 and in the effective source–sink scenario
are given by criteria C1–C4 in Tab. 1. The effective carrying capacity of the harvested
patch A becomes equal to the carrying capacity of the protected patch B at h1, where
KBd

= K̃Ad
. The parameter values read for (a) rAd

= 3, KAd
= 60, KBd

= 30 and for (b)
rAc = 2.67, KAc = 60, KBc = 30.
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• Shift from BTD to MD: within the BTD response scenario, the larger484

patch has the higher growth rate, so that the larger patch is more likely485

to be overcrowded and benefits from leaving individuals due to dispersal486

until a certain dispersal threshold is reached. Increasing harvesting487

in patch A leads to smaller effective growth in the harvested patch;488

therefore, the smaller protected patch now facilitates the higher growth,489

leading to overcrowding in the protected patch as dispersal brings in490

additional individuals. So that, the response scenario shifts from BTD491

to MD.492

• Shift from UB to MB: within the UB response scenario, the larger patch493

has the higher growth rate, and dispersal helps to reduce overcrowding494

in the large patch by moving individuals to the smaller patch. However,495

high dispersal values may be excessive, as a large number of individ-496

uals can cause overcrowding within the protected patch. Introducing497

harvesting in the larger patch reduces the population size difference be-498

tween the patches, leading to fewer individuals migrating to the smaller499

patch. As a result, the smaller patch does not overcrowd as quickly,500

expanding the range of parameters for the MB response scenario.501

3.3.2. Harvesting the effectively smaller patch in source–source dynamics502

If h ∈ [h1, h2], there is a net migration from the effectively larger protected503

patch B to the smaller harvested patch A. Figure 7(a) shows that as dispersal504

increases, the population in patch A (red) grows, while the population in the505

protected patch B (blue) declines. The domains of the response scenarios are506

reversed in contrast to the case when the large patch is harvested, resulting507

in a point reflection. Figure 6 illustrates a shift from MD to BTD and from508

MB to UB response scenario as harvesting increases.509

• Shift from MD to BTD: As discussed above, the MD response scenario510

emerges if the smaller patch has a higher intrinsic growth rate, so an511

increase in dispersal results in additional individuals inhabiting the512

already crowded patch. The introduction of harvesting in the effectively513

smaller patch A with higher intrinsic growth reduces the population514

size and relaxes the crowded conditions leading to a shift to the BTD515

response scenario.516

• Shift from MB to UB: In the MB response scenario, the larger pro-517

tected patch B has a higher intrinsic growth. Dispersal helps reduce518
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Figure 7: Qualitative behaviour of the asymptotic yield (black) and the asymptotic sub-
population sizes for patch A (red) and patch B (blue) for four different parameter scenarios.
The yield under isolation, denoted as Y0, is marked with a black dotted line. Parame-
ter values in discrete time as in Fig. 6(a) with (a) Decreasing yield with rBd

= 4 and
hAd

= 0.1, (b) increasing yield with rBd
= 4 and hAd

= 0.4, (c) humped-shaped yield
with rBd

= 1.1 and hAd
= 0.47 and (d) humped-shaped yield leading to zero yield with

rBd
= 1.4 and hAd

= 0.75. The model was simulated for 500 time steps and only the last
values are plotted. We chose KA and KB as initial conditions for subpopulations A and
B, respectively.

overcrowding in patch B by moving individuals to the smaller patch A.519

With the introduction of harvesting, patch A is reduced, sothat the dif-520

ference in population sizes increases. Therefore, the amount of moving521

individuals increases and high dispersal values diminish the beneficial522

effect on the ATPS due to overcrowding in the small harvested patch.523

As a consequence, the system shifts to the UB response scenario.524

The increasing parameter domains of the humped–shaped response scenar-525

ios UB and BTD suggest that, within this range, a specific dispersal value526

between isolation and perfect mixing emerges as the favoured option for527

achieving the most beneficial outcomes.528

3.3.3. Harvesting the effectively smaller patch in source–sink dynamics529

If h2 < h, there exists a rescue effect of the effective sink whenever there530

is a beneficial response of the ATPS. In the MB response scenario, the large531

growth in patch B is sufficiently strong to offset the decline in patch A re-532

sulting from harvesting. Conversely, in all other response scenarios, large533

dispersal values consistently diminish the ATPS. The weaker the growth in534
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source patch B, the more detrimental the response scenario becomes. Gener-535

ally, a detrimental effect can be named negative sink effect, where the ATPS536

falls below the reference value (ATPS = KB). This implies that, through har-537

vesting, the smaller patch A essentially depletes resources from patch B. The538

weaker source patch B, the more unfavourable the outcome for the ATPS. If539

the intrinsic growth rate of source patch B is diminished to such an extent540

that it cannot balance the effective intrinsic growth rate of sink patch A,541

both populations face extinction. Consequently, harvesting solely from the542

smaller patch can culminate in complete extinction of both patches.543

4. Total asymptotic yield544

We will compare the asymptotic yield, Y ∗(N∗
A) when the patches are con-545

nected to the asymptotic yield when the patches are isolated. This reference546

value is denoted as Y0.547

In this Section, we explore the qualitative behaviour of the asymptotic548

yield in response to increasing dispersal when harvesting occurs either in the549

larger patch or the smaller patch. Since the yield is directly proportional to550

the size of the harvested subpopulation, our focus is on the subpopulation551

sizes rather than the total population size.552

Figure 7 presents the asymptotic subpopulation sizes for the harvested553

patch A (red), the protected patch B (blue), the asymptotic yield (black)554

and the reference value yield at isolation Y0 (black dotted) for four param-555

eter scenarios in discrete time (the results for the continuous-time system556

are qualitatively similar). In an effective source–sink environment, the yield557

is consistently compared to zero, as without dispersal the harvested patch558

would go extinct, resulting in zero yield. As in Fig. 3, we classify the yield be-559

haviours into three categories: “The more connectivity the better”, “Medium560

connectivity is best” and “Keep the patches isolated”.561

Figure 7(a, b, c) illustrate scenarios where the harvested patch A is562

smaller than protected patch B, resulting in net dispersal from patch B to563

patch A. Following from this assumption, we found three qualitatively dis-564

tinct behaviours of the asymptotic yield in response to increasing dispersal.565

• Increasing yield (see Fig. 7(a)): Patch A’s subpopulation size and catch566

increase monotonically due to positive net dispersal towards patch A.567

• Humped-shaped yield (see Fig. 7(b)): As harvest intensity increases,568

the effective carrying capacity in patch A decreases, leading to a larger569
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population size difference between the patches. Then, low dispersal570

has a high impact on the effectively small patch causing a substantial571

increase. However, as dispersal increases, this effect diminishes due572

to the decreasing of patch B, which is unable to compensate for the573

missing individuals. Then, high dispersal eventually even decreases574

the asymptotic yield.575

• Zero yield (see Fig. 7(c)): Patch A and the total population go extinct576

at a certain dispersal value, resulting in catch decreasing to zero, which577

is similar to the Extinction response scenarios of the total population578

size.579

Figure 7(d) shows the scenario in which the harvested patch A has the580

larger carrying capacity, leading to581

• Decreasing yield : Due to the net dispersal from patch A to patch B,582

patch A loses individuals through both harvesting and dispersal, lead-583

ing to a monotonic decrease in yield as dispersal increases.584

Figure 8 depicts the parameter domains of the four qualitative behaviours585

of yield to increasing dispersal where (a) the harvested patch has the smaller586

effective carrying capacity using the same parameter values as in Fig. 5(a),587

and (b) the harvested patch has the larger effective carrying capacity using588

the parameter values as in Fig. 6(a). When comparing the parameter domains589

of the ATPS response scenarios presented in Figures 5(a) and 6(a) with those590

of the yield behaviours, it becomes apparent that they do not align - for591

instance, the parameter domains for increasing yield and the MB response592

scenario differ significantly. The E response scenario and zero yield scenario593

are a notable exception, as an extinct population naturally results in zero594

yield.595

Harvesting the small patch leads to increasing yield, as long as the growth596

in the protected patch is strong and harvesting is modest. Strong harvesting597

and a slowly growing protected patch can lead to detrimental effects on the598

yield if dispersal values are high because the protected patch B can not599

compensate the loss due to harvesting.600

When harvesting the large patch, dispersal has a detrimental effect on the601

asymptotic yield as the net migration flows from the harvested patch towards602

the protected patch. Such that the harvested patch is loosing individuals due603

to dispersal and harvesting. Once the effective carrying capacity of patch A604
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Figure 8: Parameter domains for the four qualitative behaviours of the asymptotic yield
to increasing dispersal in discrete time. With (a) Harvesting the small patch (parameter
values as in Fig. 5(a)) and (b) Harvesting the large patch (parameter values as in Fig.6(a)).
The effective carrying capacity of the harvested patch A becomes equal to the carrying
capacity of the protected patch B at h1 where KBd

= K̃Ad
. h2 represents the critical

harvesting threshold separating the system in an effective source–source system to the left
from an effective source–sink system to the right. This diagram is generated numerically
with KAd

and KBd
as initial conditions. The asymptotic value of the yield (after 100 time

steps) was evaluated for four dispersal values: δd ∈ {0, 0.0001, 0.499, 0.4991} in order to
distinguish between the four qualitative behaviours.
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is diminished by harvesting to the extent that it is equal to the carrying605

capacity of the protected patch B, the dynamics resemble those observed606

when harvesting the initially smaller patch (compare to the ATPS dynamics).607

5. Discussion and conclusions608

We investigated the impact of increased dispersal between subpopula-609

tions, where one population is subjected to proportional harvesting, on the610

total asymptotic population size (ATPS) and the asymptotic yield. By inte-611

grating proportional harvesting into the growth function, we define sustain-612

ably harvested dynamics as effective source–source dynamics. In contrast,613

if overharvesting occurs, the dynamics transitions to effective source–sink614

dynamics.615

We extend previous research on the impacts of increased dispersal on the616

asymptotic population size in the absence of harvesting, a topic that has617

received considerable attention in recent years. The source–source environ-618

ment without harvesting has been fully analysed by [22] in discrete time,619

who identified four response scenarios and showed that there is a correspon-620

dence with the continuous–time results by [20]. The source–sink dynamics621

without harvesting has been studied in continuous time by [21] and we ex-622

tended this research by differentiating between the monotonically beneficial623

and unimodally beneficial response scenarios. In discrete time, [28] observed624

two of our five response scenarios, namely the beneficial turning detrimental625

and the extinction response scenarios.626

We have completed the categorisation and demonstrated that there exist five627

response scenarios in the source–sink case with symmetric dispersal. Through628

a graphical analysis originally introduced by [27] for continuous-time models,629

we showed that the categorisation in source–sink dynamics of the discrete-630

time model shows correspondence to those of the continuous-time model631

with one notable exception: the monotonically detrimental response scenario632

is absent in continuous time. This discrepancy is attributed to differences633

between the Beverton–Holt and logistic growth functions. Although these634

two functions are often considered analogues, their similarity has limitations.635

The logistic growth function exhibits linear density dependence (which does636

not accurately reflect the growth patterns of most populations [29]) while637

the Beverton–Holt function exhibits non-linear density-dependence. A more638

suitable model, in terms of analogy to the Beverton–Holt growth function639
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and alignment with real data, might be the theta-logistic growth function640

which allows convex or concave density dependencies.641

When harvesting is introduced into the dynamics of the two-patch model,642

dispersal is often examined only for specific values, rather than across the643

entire range. For instance, [30] focused on either isolated or strongly con-644

nected patches, and [25] chose three distinct dispersal values. In particular645

in experiments, it is not feasible to cover a continuous range of dispersal val-646

ues [23, 24, 26, 25]. Considering that the strength of dispersal can critically647

determine whether its effect on the ATPS is beneficial or detrimental, we648

examined the full range of dispersal values while varying harvesting intensity649

and the growth rate ratios between patches.650

Our findings can be distilled into three key statements on how connectiv-651

ity can affect both ATPS and yield. When comparing the parameter domains652

of the ATPS key statements with those of the yield in Figure 9, a notable653

misalignment becomes evident. For example, the ”Keep the patches isolated”654

statement (red) is valid across the entire range for yield when harvesting the655

larger patch, whereas for the ATPS, it holds true only under conditions of656

high growth in the protected patch.657

1. The more connectivity the better (blue area in Fig. 9)658

The only parameter domain where both ATPS and yield monoton-659

ically benefit from increased dispersal is when the protected patch is660

both fast growing and larger, with net migration towards the harvested661

patch (i.e., when h ∈ [h1, 1]). In contrast to yield, the ATPS needs662

stronger growth in the protected patch to sustain the response sce-663

nario. Nevertheless, to maintain this response scenario with stronger664

harvesting, faster growth in the protected area is essential for both yield665

and ATPS. This is consistent with literature advocating the protection666

of fast growing patches (i.e., fitness hotspots), to achieve optimal re-667

sults [31, 13, 32, 11]. If h ∈ [0, h1] the blue area of the ATPS indicates668

a slowly growing and smaller protected patch, with net migration from669

the harvested patch to the protected patch. The ATPS increases with670

increasing dispersal, but this comes at the expense of reduced yield,671

which decreases as dispersal increases.672

2. Medium connectivity is best (orange area in Fig. 9). If the pro-673

tected patch is neither a fitness hotspot (high rB) nor growing slowly674

(low rB), medium connectivity leads to the largest ATPS in the source–675

source environment (h ∈ [0, h2]). If the harvested patch becomes a sink676
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Figure 9: Parameter domains for the qualitative behaviours of the asymptotic total popu-
lation size (on a logarithmic scale) and asymptotic yield in response to increasing dispersal
in discrete time (results are qualitatively similar in continuous time). Patch A is harvested
and patch B is protected. The qualitative behaviours are marked by the three sketches
and named “The more connectivity the better” (blue, solid arrow), “Medium connectivity
is best” (orange, dashed arrow) and “Keep the patches isolated” (red, dashed line). If
h ∈ [0, h1] the harvested patch A is larger than the protected patch B, if h ∈ [h1, h2]
the harvested patch is effectively smaller but acts still as a source and if h ∈ [h2, 1] the
harvested patch A becomes a sink (box with a cross).
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(h ∈ [h2, 1]), medium dispersal is the best option for the ATPS if the677

growth in the protected patch is also in the medium range.678

For yield, medium connectivity is optimal when harvesting is high and679

the protected patch growth is slow. Low dispersal helps sustain the680

harvested patch resulting in positive yield. High dispersal places exces-681

sive demands on the protected patch’s resources, negatively affecting682

yield: without any remaining ATPS, there will be nothing to harvest.683

3. Keep the patches isolated (red area in Fig. 9). In the literature,684

it is well established that the introduction of protected areas can re-685

duce extinction risk [33, 34]. Our findings suggest that total extinction686

is only possible above a certain dispersal threshold (see Fig. 3(e)): If687

there is net migration from the protected patch to the harvested patch688

(i.e., h ∈ [h1, 1]), strong dispersal with intensive harvesting in one patch689

can threaten the protected patch’s persistence if the harvesting-induced690

sink is stronger (i.e., negative sink effect). So, in these parameter do-691

mains it is best to keep the patches isolated in terms of the ATPS.692

However, there is no scenario (within h ∈ [h1, 1]) in which low disper-693

sal decreases yield; particularly when the harvested patch is rescued,694

yield only becomes positive when the patches are not isolated.695

Conversely, when there is net migration from the harvested patch to the696

protected patch (h ∈ [0, h1]), it is always optimal to keep the patches697

isolated in terms of yield, and this is also true for ATPS if the protected698

patch is fast-growing.699

Many studies typically assume a priori that there is unidirectional flow700

from the protected patch to the harvested patch, commonly referred to as701

spillover [11, 13]. In contrast, our analysis takes a more general approach702

by assuming symmetric dispersal. Through this framework, we identified703

conditions under which the desired spillover does not occur: specifically,704

when the protected patch is smaller than the harvested patch in terms of705

effective size. This situation can occur when the harvested patch is subject706

to low harvesting effort and possesses a larger carrying capacity.707

In conclusion, our study offers insights into how different dispersal, har-708

vesting and habitat qualities affect the asymptotic yield and the asymptotic709

total population size within a two-patch model where one patch is protected710

and the other one is harvested proportionally. We have discovered that in-711

creasing connectivity can serve as a lifeline or a route to extinction, depending712

on the circumstances: In particular, fast-growing protected patches can res-713
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cue the harvested patch, while the combination of strong harvesting pressure714

and/or slowly growing protected populations can lead to the extinction of715

the total population. Additionally, we found that net migration from the716

protected patch to the harvested patch is necessary to ensure positive effects717

on the asymptotic yield. Interestingly, the asymptotic total population size718

can be positively affected by net migration in both directions. However, if719

net migration is directed towards the protected patch, the increase of the720

asymptotic total population size occurs at the cost of reduced yield.721
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Appendix A. Discrete time743

We provide theoretical results for system (1) in the case of effective744

source–sink dynamics. In what follows, assume 0 < r̃Ad
≤ 1 < rBd

, denote745
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R2
+ := [0,+∞)× [0,+∞) and R2

++ := (0,+∞)× (0,+∞), and define746

δcritd :=
(1− r̃Ad

)(rBd
− 1)

r̃Ad
+ rBd

− 2r̃Ad
rBd

.

The following result shows the conditions for a unique positive equilibrium747

of system (1).748

Proposition 1. Assume 0 < r̃Ad
≤ 1 < rBd

. The following holds:749

1. If δd = 0, then (0, KBd
) is a fixed point of system (1) such that750

lim
t→+∞

(NAd
(t), NBd

(t)) = (0, KBd
)

for any initial condition (NAd
(0), NBd

(0)) ∈ R2
+ \ {(0, 0)}.751

2. If δd ∈ (0, 0.5], (1 − δd)(r̃Ad
+ rBd

) < 2, r̃Ad
+ rBd

− 2r̃Ad
rBd

> 0,752

r̃Ad
rBd

< 1, and δd ≥ δcritd, then the population described by system (1)753

is doomed to extinction, i.e.,754

lim
t→+∞

(NAd
(t), NBd

(t)) = (0, 0)

for any initial condition (NAd
(0), NBd

(0)) ∈ R2
+.755

3. For all remaining cases, system (1) has a fixed point (N∗
Ad
, N∗

Bd
) ∈ R2

++756

such that757

lim
t→+∞

(NAd
(t), NBd

(t)) = (N∗
Ad
, N∗

Bd
)

for any initial condition (NAd
(0), NBd

(0)) ∈ R2
+ \ {(0, 0)}.758

Proof. For δd = 0, system (1) is an uncoupled system. Since r̃Ad
≤ 1, all759

solutions for the first equation of (1) tend to zero, whereas all solutions for760

the second equation of (1) tend to KBd
given that rBd

> 1. Hence, the first761

statement follows.762

For the second and third statements, following [35], we rewrite system
(1) as (

NAd
(t+ 1)

NBd
(t+ 1)

)
= SδdΛ(NAd

(t), NBd
(t))

(
NAd

(t)
NBd

(t)

)
,

where

Sδd :=

(
1− δd δd
δd 1− δd

)
and Λ(NAd

(t), NBd
(t)) :=

(
f̃Ad

0
0 fBd

)
.
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We are going to characterise when the inequality ρ(SδdΛ(0, 0)) > 1 holds,763

where ρ(SδdΛ(0, 0)) denotes the spectral radius of SδdΛ(0, 0). Then we will764

invoke [35, Theorem 2.1] to finish the proof. All elements of the matrix765

SδdΛ(0, 0) are positive, so by the Perron-Frobenius Theorem there exists a766

simple positive eigenvalue λ such that ρ(SδdΛ(0, 0)) = λ. Therefore, we have767

that768

u2 − 4v > 0 and ρ(SδdΛ(0, 0)) =
u+

√
u2 − 4v

2
,

where u = (1− δd)(r̃Ad
+ rBd

) and v = (1− 2δd)r̃Ad
rBd

are the coefficients of769

the characteristic polynomial of the matrix SδdΛ(0, 0). It is straightforward770

that ρ(SδdΛ(0, 0)) > 1 if u ≥ 2.771

For the case u < 2, we have that772

ρ(SδdΛ(0, 0)) > 1 ⇔ u+
√
u2 − 4v

2
> 1 ⇔ u2 − 4v > (2− u)2 ⇔ u− v > 1

⇔ (1− δd)(r̃Ad
+ rBd

)− (1− 2δd)r̃Ad
rBd

> 1

⇔ r̃Ad
+ rBd

− r̃Ad
rBd

− 1 > δd(r̃Ad
+ rBd

− 2r̃Ad
rBd

)

⇔ (rBd
− 1)(1− r̃Ad

) > δd(r̃Ad
+ rBd

− 2r̃Ad
rBd

). (A.1)

Assume r̃Ad
̸= 1 and r̃Ad

+rBd
−2r̃Ad

rBd
> 0. We distinguish two subcases.773

If r̃Ad
rBd

≥ 1, then condition (A.1) holds:774

(rBd
− 1)(1− r̃Ad

) = r̃Ad
+ rBd

− r̃Ad
rBd

− 1

= r̃Ad
+ rBd

− 2r̃Ad
rBd

+ r̃Ad
rBd

− 1

≥ r̃Ad
+ rBd

− 2r̃Ad
rBd

> δd(r̃Ad
+ rBd

− 2r̃Ad
rBd

).

If r̃Ad
rBd

< 1, then it is straightforward that condition (A.1) holds if and775

only if δd < δcritd .776

Finally, for the cases r̃Ad
= 1 or r̃Ad

+ rBd
− 2r̃Ad

rBd
≤ 0, condition (A.1)777

is trivially met. Note that these two cases cannot occur simultaneously. For778

the first case, r̃Ad
rBd

= rBd
> 1. For the second case, it is routine to check779

that the infimum of the function xy subject to the constraints 0 < x ≤ 1 < y780

and x + y − 2xy ≤ 0 equals 1 and is obtained for x = 1 and y → 1. Hence,781

r̃Ad
+ rBd

− 2r̃Ad
rBd

≤ 0 implies r̃Ad
rBd

> 1. This completes the proof, and782

the statement follows from [35, Theorem 2.1].783
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Corollary 1. Assume 0 < r̃Ad
≤ 1 < rBd

. The population described by784

system (1) goes extinct in the long run if and only if r̃Ad
+ rBd

≤ 2 and785

δd ≥ δcritd.786

Proof. By Proposition 1, the population goes extinct if and only if (1 −787

δd)(r̃Ad
+ rBd

) < 2, r̃Ad
+ rBd

− 2r̃Ad
rBd

> 0, r̃Ad
rBd

< 1, and δd ≥ δcritd .788

From the latter condition, it must be δcritd ≤ 0.5, which is equivalent to789

r̃Ad
+ rBd

≤ 2. In particular, this implies (1− δd)(r̃Ad
+ rBd

) < 2. Moreover,790

it is routine to check that the infimum of the function x + y − 2xy and the791

supremum of the function xy under the constraints 0 < x ≤ 1 < y and792

x + y ≤ 2 are 0 and 1, respectively, and the two of them are obtained for793

x = 1 and y → 1. Hence, the condition r̃Ad
+ rBd

≤ 2 also guarantees794

r̃Ad
+ rBd

− 2r̃Ad
rBd

> 0 and r̃Ad
rBd

< 1, and the statement follows.795

In what follows, when it exists, we make explicit the dependence of the796

fixed point of system (1) on the dispersal rate, by writing this point in the797

form (N∗
Ad
(δd), N

∗
Bd
(δd)). By Corollary 1, the function H : D → R given by798

H(δd) := N∗
Ad
(δd) +N∗

Bd
(δd)−KBd

,

where799

D =

{
[0, 0.5] if r̃Ad

+ rBd
> 2,

[0, δcritd) if r̃Ad
+ rBd

≤ 2,

is well defined. In what follows, D̊ will denote the interior of D. Clearly, H800

vanishes at δd = 0. The following results show that H can have at most801

another zero given by the expression802

δ†d :=
K̃Ad

(K̃Ad
−KBd

)(1− r̃Ad
)(rBd

− 1)(r̃Ad
rBd

− 1)

P
, (A.2)

with803

P := (K̃Ad
r̃Ad

(rBd
−1)−KBd

(1−r̃Ad
))(K̃Ad

(1+rBd
−2r̃Ad

rBd
)−KBd

(1−r̃Ad
)rBd

).

Proposition 2. Assume 0 < r̃Ad
≤ 1 < rBd

. If P = 0 or δ†d /∈ D, then H804

has a unique zero, δd = 0. Otherwise, H has two zeros, which are δd = 0 and805

δd = δ†d.806
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Proof. AssumeH(δd) = 0 for δd ∈ [0, 0.5]. We have thatN∗
Ad
(δd) andN∗

Bd
(δd)807

are given by the system of equations808 {
N∗

Ad
(δd) = (1− δd)f̃Ad

(N∗
Ad
(δd)) + δdfBd

(N∗
Bd
(δd)),

N∗
Bd
(δd) = δdf̃Ad

(N∗
Ad
(δd)) + (1− δd)fBd

(N∗
Bd
(δd)),

(A.3)

and by adding these equations we obtain809

N∗
Ad
(δd) +N∗

Bd
(δd) = f̃Ad

(N∗
Ad
(δd)) + fBd

(N∗
Bd
(δd)).

From the assumption H(δd) = 0, we obtain810

N∗
Ad
(δd) +N∗

Bd
(δd) = KBd

. (A.4)

Therefore, N∗
Ad
(δd) and N∗

Bd
(δd) are solutions of the system811 {

N∗
Ad
(δd) +N∗

Bd
(δd) = f̃Ad

(N∗
Ad
(δd)) + fBd

(N∗
Bd
(δd)),

N∗
Ad
(δd) +N∗

Bd
(δd) = KBd

.
(A.5)

System (A.5) has at most two solutions, which are812

(N∗
Ad
(δd), N

∗
Bd
(δd)) = (0, KBd

) and

(N∗
Ad
(δd), N

∗
Bd
(δd)) =

(
K̃Ad

KBd
(r̃Ad

rBd
− 1)

Q
,
KBd

(K̃Ad
−KBd

)(1− r̃Ad
)

Q

)
,

where Q = K̃Ad
r̃Ad

(rBd
−1)−KBd

(1− r̃Ad
). Moreover, from the first equation813

of (A.3) and system (A.5), we obtain814

(KBd
− 2f̃Ad

(N∗
Ad
(δd)))δd = N∗

Ad
(δd)− f̃Ad

(N∗
Ad
(δd)).

If we substitute N∗
Ad
(δd) = 0 into the previous equality, we obtain δd = 0,815

and if we substitute N∗
Ad
(δd) =

K̃Ad
KBd

(r̃Ad
rBd

−1)

Q
, we obtain816

Pδd = K̃Ad
(K̃Ad

−KBd
)(1− r̃Ad

)(rBd
− 1)(r̃Ad

rBd
− 1).

If P = 0, the previous equality is inconsistent and thus δd = 0 is the unique817

zero of H. Otherwise, we obtain δd = δ†d, which is another zero of H if818

δ†d ∈ D.819
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The situation described in Proposition 2 can be observed in Fig. 3. Panel (c)820

corresponds to the cases in which P ̸= 0 and δ†d ∈ D, for which the graph821

crosses the horizontal line ATPS0 at the abscissa δ†d. The remaining panels822

correspond to situations in which either P = 0 or δ†d /∈ D, for which the823

graph is always either above or below ATPS0.824

Next, we calculate the derivative H ′(0+).825

Proposition 3. Assume 0 < r̃Ad
< 1 < rBd

. Then,826

H ′(0+) =
(r̃Ad

rBd
− 1)KBd

(1− r̃Ad
)(rBd

− 1)
.

Proof. We recall that N∗
Ad
(δd) and N∗

Bd
(δd) are implicitly defined by sys-827

tem (A.3). Consider the function F : R3 → R2 given by F (δd, N̄A, N̄B) =828

(F1(δd, N̄A, N̄B), F2(δd, N̄A, N̄B)), with829

F1(δd, N̄A, N̄B) = (1− δd)f̃Ad
(N̄A) + δdfBd

(N̄B)− N̄A,

F2(δd, N̄A, N̄B) = δdf̃Ad
(N̄A) + (1− δd)fBd

(N̄B)− N̄B.

To prove that (N∗
Ad
)′(0+) and (N∗

Bd
)′(0+) are finite, we apply the Implicit830

Function Theorem to the system F (δd, N̄A, N̄B) = (0, 0) around the point831

(0, N∗
Ad
(0), N∗

Bd
(0)) = (0, 0, KBd

). Since f ′
Ad
(0) = r̃Ad

and f ′
Bd
(KBd

) = 1
rB
, we832

have that833 ∣∣∣∣∣∣
∂F1

∂N̄A

∂F1

∂N̄B

∂F2

∂N̄A

∂F2

∂N̄B

∣∣∣∣∣∣
|(0,0,KBd

)

=

∣∣∣∣∣∣
r̃Ad

− 1 0

0 1−rB
rB

∣∣∣∣∣∣ ̸= 0.

This proves that there exists ζ > 0 such that the system F (δd, N̄A, N̄B) =834

(0, 0) defines two differentiable functions N̄A(δd) and N̄B(δd) for δd ∈ (−ζ, ζ).835

Clearly, if δd ∈ [0, ζ), the point (N̄A(δd), N̄B(δd)) is a fixed point of system (1).836

By Proposition 1, we conclude that N̄A(δd) = N∗
Ad
(δd) and N̄B(δd) = N∗

Bd
(δd)837

for δd ∈ [0, ζ), which proves that (N∗
Ad
)′(0+) = N̄ ′

A(0) and (N∗
Bd
)′(0+) =838

N̄ ′
B(0) are finite.839

By differentiating with respect to δd in system (A.3) and taking δd → 0+

we arrive at{
(N∗

Ad
)′(0+) = −f̃Ad

(N∗
Ad
(0)) + f ′

Ad
(N∗

Ad
(0))(N∗

Ad
)′(0+) + fBd

(N∗
Bd
(0)),

(N∗
Bd
)′(0+) = f̃Ad

(N∗
Ad
(0))− fBd

(N∗
Bd
(0)) + f ′

Bd
(N∗

Bd
(0))(N∗

Bd
)′(0+).
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Since f̃Ad
(N∗

Ad
(0)) = 0, fBd

(N∗
Bd
(0)) = KBd

, f̃ ′
Ad
(N∗

Ad
(0)) = r̃Ad

, and f ′
Bd
(N∗

Bd
(0)) =

1
rBd

, we obtain  (N∗
Ad
)′(0+) =

KBd

1−r̃Ad

,

(N∗
Bd
)′(0+) = − rBd

KBd

rBd
−1

.

Thus,840

H ′(0+) = (N∗
Ad
)′(0+) + (N∗

Bd
)′(0+) =

(r̃Ad
rBd

− 1)KBd

(1− r̃Ad
)(rBd

− 1)
.

841

Now, we study how H varies with the dispersal rate. Define842

A := (K̃Ad

√
r̃Ad

(rBd
− 1) +KBd

(r̃Ad
− 1)

√
rBd

)(rBd
− 1),

B := KBd
(2K̃Ad

√
r̃Ad

− (K̃Ad
−KBd

+ (K̃Ad
+KBd

)r̃Ad
)
√
rBd

)(rBd
− 1),

C := K̃Ad
K2

Bd
(
√

r̃Ad
− (1 + r̃Ad

)
√
rBd

+
√

r̃Ad
rBd

).

Lemma 1. Assume 0 < r̃Ad
< 1 < rBd

. Then, the equation Ax2+Bx+C = 0843

has two simple real roots.844

Proof. To simplify the calculations, we define M̃Ad
:= K̃Ad

/(r̃Ad
− 1) and845

MBd
:= KBd

/(rBd
− 1). It is straightforward that M̃Ad

> 0 and MBd
> 0.846

Consider the terms847

a :=
A

(r̃Ad
− 1)2(rBd

− 1)
= M̃Ad

√
r̃Ad

+MBd

√
rBd

,

b :=
B

(r̃Ad
− 1)2(rBd

− 1)

= M̃2
Ad

√
r̃Ad

(1− r̃Ad
) + M̃Ad

MBd

(√
rBd

−
√

r̃Ad
+
√
rBd

(1−
√

r̃Ad
rBd

)
)
,

c :=
C

(r̃Ad
− 1)2(rBd

− 1)
= M̃2

Ad
MBd

(
√

r̃Ad
−√

rBd
)(
√

r̃Ad
rBd

− 1).

The result follows from the fact that the discriminant of the equation ax2 +848

bx+ c = 0 is positive,849

b2 − 4ac = M̃2
Ad
r̃Ad

(M̃2
Ad
(r̃Ad

− 1)2 +M2
Bd
(rBd

− 1)2

+ 2M̃Ad
MBd

((
√

r̃Ad
−√

rBd
)2 + (

√
r̃Ad

rBd
− 1)2)).

850
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By using Lemma 1, denote by x∗ the largest root of the equation Ax2 +851

Bx+ C = 0, and define852

y∗ :=
KBd

(K̃Ad
(
√
rBd

−
√

r̃Ad
) + (r̃Ad

− 1)
√
rBd

x∗)

K̃Ad

√
r̃Ad

(rBd
− 1)

.

Proposition 4. Assume 0 < r̃Ad
< 1 < rBd

. Then, f̃Ad
(x∗) ̸= fBd

(y∗), and853

if we define854

δmaxd :=
y∗ − fBd

(y∗)

f̃Ad
(x∗)− fBd

(y∗)
,

then the following holds:855

1. If δmaxd /∈ D̊, then H is strictly monotonic in D.856

2. If δmaxd ∈ D̊, then H is strictly increasing in [0, δmaxd) and strictly857

decreasing in D \ [0, δmaxd).858

Proof. Assume that H ′(δd) = 0 for δd ∈ D̊. From the expression of H, this859

is equivalent to (N∗
Ad
)′(δd) + (N∗

Bd
)′(δd) = 0. By adding the two equations in860

system (A.3) and differentiating with respect to δd, we obtain861

(N∗
Ad
)′(δd) + (N∗

Bd
)′(δd) = f ′

Ad
(N∗

Ad
(δd))(N

∗
Ad
)′(δd) + f ′

Bd
(N∗

Bd
(δd))(N

∗
Bd
)′(δd),
(A.6)

which after substituting (N∗
Bd
)′(δd) = −(N∗

Ad
)′(δd) leads to862

(f ′
Ad
(N∗

Ad
(δd))− f ′

Bd
(N∗

Bd
(δd))) · (N∗

Ad
)′(δd) = 0.

Suppose (N∗
Ad
)′(δd) = 0. Then, (N∗

Bd
)′(δd) = 0. Substitution into the system863

obtained from differentiating (A.3) with respect to δd gives f̃Ad
(N∗

Ad
(δd)) =864

fBd
(N∗

Bd
(δd)). If we impose this condition, then system (A.3) reads865 {

N∗
Ad
(δd) = f̃Ad

(N∗
Ad
(δd)),

N∗
Bd
(δd) = fBd

(N∗
Bd
(δd)),

and therefore N∗
Ad
(δd) = 0 and N∗

Bd
(δd) = KBd

. The latter is absurd because,866

by Proposition 1, necessarily δd = 0, and we are seeking stationary points of867

H in the interior of its domain. Hence, f ′
Ad
(N∗

Ad
(δd)) = f ′

Bd
(N∗

Bd
(δd)), which868

is equivalent to869

N∗
Bd
(δd) =

KBd
(K̃Ad

(
√
rBd

−
√

r̃Ad
) + (r̃Ad

− 1)
√
rBd

N∗
Ad
(δd))

K̃Ad

√
r̃Ad

(rBd
− 1)

. (A.7)
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The sum of the equations in (A.3) yields870

N∗
Ad
(δd) +N∗

Bd
(δd) = f̃Ad

(N∗
Ad
(δd)) + fBd

(N∗
Bd
(δd)),

which is equivalent to871

A(N∗
Ad
(δd))

2 +BN∗
Ad
(δd) + C = 0 (A.8)

after substituting the value of N∗
Bd
(δd) in (A.7). Hence, N∗

Ad
(δd) is one of the872

roots stated in Lemma 1. We now distinguish three cases.873

(a) Assume r̃Ad
rBd

< 1. In this case, under the assumptions in the state-874

ment, A, B and C are positive, and thus the two roots of the equation875

Ax2 +Bx+ C = 0 are negative. Hence, H has no stationary points in876

the interior of its domain.877

(b) Assume r̃Ad
rBd

= 1. In this case, under the assumptions in the state-878

ment, A > 0, B > 0 and C = 0, and thus the two roots of Ax2+Bx+C879

are −B/A < 0 and 0. Hence, N∗
Ad
(δd) = 0, and by Proposition 1 nec-880

essarily δd = 0. This proves that in this case H neither has stationary881

points in the interior of its domain.882

(c) Assume r̃Ad
rBd

> 1. Under the assumptions in the statement, A > 0883

and C < 0, and therefore the two roots of Ax2 + Bx + C = 0 are884

nonzero and have different signs. This implies N∗
Ad
(δd) = x∗ > 0.885

Notice that, under the assumptions in the statement, y∗ > 0 if x∗ > 0.886

This, together with equation (A.7), yields N∗
Bd
(δd) = y∗ > 0. Moreover,887

we have seen that necessarily fA(x
∗) ̸= fB(y

∗), and thus δmaxd is well888

defined. For all the above, H has stationary points in the interior of889

its domain if and only if890

(N∗
Ad
(δd), N

∗
Bd
(δd)) = (x∗, y∗)

for some δd ∈ D̊. This is equivalent to say that (x∗, y∗) satisfies system891

(A.3) for some δd ∈ D̊, i.e.,892 {
x∗ = (1− δd)f̃Ad

(x∗) + δdfBd
(y∗),

y∗ = δdf̃Ad
(x∗) + (1− δd)fBd

(y∗).
(A.9)

The sum of these two equalities is893

x∗ + y∗ = f̃Ad
(x∗) + fBd

(y∗),
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which is met by the construction done above. Hence, it is enough to894

impose any of the two equalities in (A.9). If we focus on the second of895

them, we can rewrite it in the form896

(f̃Ad
(x∗)− fBd

(y∗))δd = y∗ − f̃Ad
(y∗),

which is equivalent to δd = δmaxd . Hence, if δmaxd /∈ D̊, then (x∗, y∗)897

does not satisfy (A.3) for any δd ∈ D̊. Consequently, H has no station-898

ary points in the interior of its domain and is strictly monotonic in D,899

which proves the first statement.900

Assume now δmaxd ∈ D̊. In that case, (x∗, y∗) satisfies (A.3) only for901

δd = δmaxd , and thus H has this point as the only stationary point in902

the interior of its domain. To study the monotonicity of H on either903

side of that point, we study the sign of the second derivative of H at it.904

By differentiating (A.6) with respect to δd and substituting δd = δmaxd ,905

we obtain906

(N∗
Ad
)′′(δmaxd) + (N∗

Bd
)′′(δmaxd) =

(N∗
Ad
)′′(δmaxd)f

′
Ad
(x∗) + (N∗

Bd
)′′(δmaxd)f

′
Bd
(y∗)

+((N∗
Ad
)′(δmaxd))

2f ′′
Ad
(x∗) + ((N∗

Bd
)′(δmaxd))

2f ′′
Bd
(y∗).

We have seen that f ′
Bd
(y∗) = f ′

Ad
(x∗) and (N∗

Bd
)′(δmaxd) = −(N∗

Ad
)′(δmaxd),907

and thus908

(1− f ′
Ad
(x∗))H ′′(δmaxd) = ((N∗

Ad
)′(δmaxd))

2(f ′′
Ad
(x∗) + f ′′

Bd
(y∗)).

Since f ′′
Ad
(x) < 0 and f ′′

Bd
(y) < 0 for all (x, y) ∈ R2

+, we have that909

H ′′(δmaxd) < 0 ⇐⇒ 1− f ′
Ad
(x∗) > 0 ⇐⇒ x∗ >

K̃Ad
(
√

r̃Ad
− 1)

r̃Ad
− 1

,

which is true since K̃Ad
< 0 and r̃Ad

< 1. Therefore, δd = δmaxd is910

a local maximum of H. Since it is the unique stationary point in the911

interior of its domain, it is the global maximum and, moreover, H is912

strictly increasing in [0, δmaxd) and strictly decreasing in D \ [0, δmaxd),913

which proves the second statement.914

915
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Figure 3 illustrates the situations described in Proposition 4. Panels (a),916

(d) and (e) correspond to the first case in Proposition 4, for which the graph917

is monotonic, either increasing or decreasing. Panels (b) and (c) correspond918

to the second case, for which the ATPS reaches a maximum at the abscissa919

δmaxd .920

Appendix B. Continuous time921

In the following, we revise system (3.2) of [21] to align it with our system922

(2) in the effective source–sink case. For consistency, we begin with the923

original notation from [21]. Their system (3.2) is a source–sink model and924

reads925

dN1

dt
= r1N1(1−

N1

K1

) +D(N2 − sN1),

dN2

dt
= r̄2N2(−1− N2

K2

) +D(sN1 −N2),

where N1, N2 denote the subpopulation sizes, r1, r̄2 > 0 represent the926

intrinsic growth rates and K1, K2 > 0 are the carrying capacities in patches927

1 and 2, respectively. Parameter D represents the dispersal rate and s the928

dispersal asymmetry.929

In our work, we use a different notation, but the models correspond to each930

other as follows. We denote the dispersal rate as δc = D and set s equal to931

one. Their source population N1 corresponds to our source population NB932

in system (2) with r1 = rBc > 0, K1 = KBc > 0. Their sink population N2933

corresponds to our effective sink population NA in system (2) with r̄2 = |r̃Ac |,934

r̃Ac < 0 and K2 = |K̃Ac |, K̃Ac < 0.935

Appendix B.1. Stability of equilibria936

We rewrite Proposition 5.5 from [21] in our notation to address the sta-937

bility of the equilibria. We denote δcritc =
rB|r̃A|
|r̃A|−rB

, R2
+ := [0,+∞)× [0,+∞)938

and R2
++ := (0,+∞)× (0,+∞).939

Proposition 5.5 [21]. Let δc > 0.940

(i) Assume |r̃Ac | ≤ rBc , or |r̃Ac | > rBc , δc < δcritc . System (2) has a unique941

positive equilibrium (N∗
A, N

∗
B), which is globally asymptotically stable942

in R2
++.943
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(ii) Assume |r̃Ac | > rBc and δc ≥ δcritc . System (2) has no positive equi-944

librium, and the extinction equilibrium (N∗
A, N

∗
B) = (0, 0) is globally945

asymptotically stable in R2
+.946

Appendix B.2. Response scenarios947

Proposition 5.11 in [21] categorises five cases how increasing dispersal948

affects the ATPS in the presence of asymmetric dispersal. We rewrite the949

proposition using our notation and align their cases with our response sce-950

narios, adding comments on each of the cases in italic. Cases (ii) and (iii)951

are not attainable in our model with symmetric dispersal, and thus we have952

excluded them. Denote the ATPS at perfect mixing as ATPS∞, at zero dis-953

persal as ATPS0 and between isolation and perfect mixing as ATPSc.954

Proposition 5.11 [21]. Assume δc > 0.955

(i) Let |r̃Ac | > rBc . Then ATPSc < ATPS0. If δc < δcritc , then ATPS∞ > 0.956

If δc ≥ δcritc , then ATPS∞ = 0.957

This case corresponds to the extinction response scenario (see Fig. 3(e)).958

(iv) Let rBc > |r̃Ac |,
K̃Ac (rBc−|r̃Ac |)
|r̃Ac |(K̃Ac+KBc )

< 1. There is δ†c > 0 such that959

ATPSc > ATPS0 as δc < δ†c, while ATPSc < ATPS0 as δc < δ†c with960

ATPS∞ > 0.961

This case corresponds to the beneficial turning detrimental response962

scenario (see Fig. 3(c)).963

(v) Let rBc > |r̃Ac |,
K̃Ac (rBc−|r̃Ac |)
|r̃Ac |(K̃Ac+KBc )

≥ 1. Then, ATPSc > ATPS0. More-964

over, ATPS∞ > ATPS0 as
K̃Ac (rBc−|r̃Ac |)
|r̃Ac |(K̃Ac+KBc )

> 1, ATPS∞ = ATPS0 as965

K̃Ac (rBc−|r̃Ac |)
|r̃Ac |(K̃Ac+KBc )

= 1.966

This case corresponds to both the unimodally beneficial and monotoni-967

cally beneficial response scenarios (see Fig. 3(a,b)).968
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